
5b.1

Lecture 5b

Legendre functions

Legendre's equation

In the previous lecture we obtained the following equation for
the θ  dependence of a solution to the Helmholtz equation in
spherical coordinates

g ' '+
cosθ
sinθ

g '+[n (n+1 )−
m2

sin2
θ ]g=0 (1)

This is one form of the associated Legendre equation. The trig
functions are not convenient to work with directly. Let's make
the substitutions

     x=cos θ
y (x)=g (θ)

(2)

and note that 0≤θ≤π  corresponds to 1≥x≥−1 .  We have

d g
d θ

=
d y
d x

d x
d θ

=−sinθ
d y
d x

=−√1−x2 d y
d x

(3)

and

d 2 g

d θ
2 =−

d
d θ

sinθ
d y
d x

       =sin2θ
d 2 y

d x 2
−cosθ

d y
d x

       =(1−x 2
)

d 2 y

d x2−x
d y
d x

(4)

The associated Legendre equation becomes

(1−x2
) y ' '−2 x y'+[n (n+1)−

m2

1−x2 ] y=0 (5)

This form is much more convenient to work with. The special
case m=0  gives the ordinary Legendre equation 

(1−x2
) y ' '−2 x y'+n (n+1) y=0 (6)

From the previous lecture we know that m=0  results in fields
that  have  no  ϕ  dependence.  We  will  solve  the  ordinary
Legendre equation first and then use that solution to solve the
associated equation.

Legendre functions

The standard form of the ordinary Legendre equation is 

y' '−
2 x

1−x 2 y '+
ν(ν+1)

1−x2 y=0 (7)

were we've used ν  instead of n as our constant to emphasize
its complete generality (although it will typically be an integer
in  our  applications).  The  coefficient  functions  are  well-
behaved at x=0  so we can find a solution of the form

y=∑
k=0

∞

a k xk
(8)

However, note that the coefficient functions have singularities
at x=±1  so we might expect problems at those points. More
about that later.

Substituting the power series into the Legendre equation we
get

(1−x2
)∑

k=2

∞

k (k−1)ak x k−2
−2 x∑

k=1

∞

k a k x k−1

+ν(ν+1)∑
k=0

∞

ak x k=0
(9)

Rearranging we obtain

∑
k=2

∞

k (k−1)a k x k−2
=∑

k=0

∞

[ k (k−1 )+2 k−ν(ν+1)] ak x k

(10)

which can be written

∑
k=0

∞

(k+2)(k+1 )a k+2 xk
=∑

k=0

∞

[k (k−1)+2 k−ν(ν+1)]a k x k

(11)

This gives us the recursion formula for the coefficients

a k+2=
(k+1+ν)(k−ν)

(k+2)(k+1)
ak (12)

where  we've  replaced  k (k−1)+2k−ν(ν+1)  by  its

equivalent  k1k− .  Clearly  we  can  form  two

solutions, one starting with a0  and containing even powers of
x and one starting with  a1  and containing odd powers of  x.
Taking a0=a1=1  we can write

w 0(x)=1+
(1+ν)(−ν)

2!
x 2

               +
(1+ν)(−ν)(3+ν)(2−ν)

4!
x4+⋯

(13)

and

w 1( x)=x+
(2+ν)(1−ν)

3!
x3

               +
(2+ν)(1−ν)(4+ν)(3−ν)

5!
x5+⋯

(14)

Let's use the ratio test to investigate the convergence of these
series. We have

∣a k+2 x k+2

a k x k ∣=(k+1+ν)(k−ν)

(k+2)(k+1)
x2
→ x2 (15)

as  k →∞ .  The  series  converges  absolutely  if  this  limit  is
bounded by a number less than unity. Clearly this will only be
the case for ∣x∣<1 . Therefore, we expect that these series will
have convergence  problems at  x=±1 .  In  other  words,  the
functions  w 0, w1  likely have  singularities  at  x=±1 .  Since
x=cosθ  this corresponds to singularities at θ=0,π , that is,

at the “poles” of the unit sphere.
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5b.2

However,  from (12) we see that  if  ν=n  is  a non-negative
integer then one of these series will terminate at the x n  term.
Therefore  one  solution  will  be  an  nth order  polynomial  and
have no singularities.  We call  these solutions the  Legendre
polynomials.  If  ν=n  is  even,  then  w 0(x)  will  be  a
polynomial  while  w1( x)  will  an  infinite  series  with
singularities at x=±1 . If ν=n  is odd, then w 1( x)  will be a
polynomial while w0(x)  will have the singularities.

It  is  convenient  to  choose  as  our  two basis  function  some
linear  combinations  of  w 0(x) , w1(x) ,  which we denote  by
Pν(x) , Q ν(x)  as

Pν(x)=a0 w0( x)+a1 w1(x)
Q ν(x)=b0 w0( x)+b1w2(x)

(16)

such that for ν=n  an integer (even or odd) Pn(x)  is always
the  polynomial.  We  can  do  this  by  defining  the  Legendre
function of the first kind of degree ν  as

Pν(x)=(−1
2)![

w0(x)

(
ν
2 )!(−

ν+1
2 )!

+
νw 1( x)

(−
ν
2)!(

ν−1
2 )!] (17)

To see how this works, recall that the factorial of a negative
integer  is infinite.  If  ν=n  is a  positive,  even integer,  then
(−ν/2)!  is infinite (it's the factorial of a negative integer), the

second term in (17) is zero and

Pν(x)=
(−1

2)!

(n
2 )!(−

n+1
2 )!

w0(x) (18)

is a finite constant times the polynomial  w0(x) . Likewise, if

=n  is a positive, odd integer, then (−[ν+1 ]/2)!  is infinite

and

Pν(x)=

ν(−1
2)!

(−
ν
2 )!(

ν−1
2 )!

w1(x) (19)

is a finite constant times the polynomial w 1( x) . The function
Qν( x)  is the Legendre function of the second kind of degree
ν .  It  never  reduces  to  a  polynomial  and  always  exhibits

singularities at x=±1 .

Through a subtle application of complex contour integration
techniques one can derive the integral representation

Pν(cos θ)= √2
π ∫

0

θ cos([ν+1 /2 ]t)

√cos (t )−cos(θ)
dt (20)

valid for all ν  (see Lebedev for details). 

Integer-order Legendre functions

As mentioned previous, for  ν=n  the Legendre functions of
the first kind reduce to polynomials. These are conveniently

represented by the Rodriguez formula 

Pn(x)=
1

2n n!

d n

d xn (x 2
−1)n (21)

The corresponding Legendre function of the second kind is

Qn(x)=
1
2

P n(x)ln(1+x
1−x )−W n−1(x) (22)

where W n−1(x)  is a polynomial of order n−1 . The 0th order
functions are

P0(x)=1

Q0(x)=
1
2

ln(1+x
1−x )

(23)

while the 1st order functions are

P1(x)=x

Q1(x)=
x
2

ln(1+x
1−x )−1

(24)

Higher  order  function  can  be  derived  from  the  recursion
formula

Rn+1(x)=
2n+1
n+1

x Rn(x)−
n

n+1
Rn−1( x) (25)

Associated Legendre functions

We have solved the “ordinary” Legendre equation and found
the two solutions Pν(x) , Q ν(x) . However, our final goal is to
solve the associated Legendre equation. This is 

(1−x2
) y ' '−2 x y'+[ν(ν+1)−

m2

1−x2 ]y=0 (26)

The  substitution  y(x)=(1−x2
)
m/ 2u(x)  produced  the

following equation for u

(1−x2
)u' '−2 (m+1) x u '+(ν−m)(ν+m+1)u=0 (27)

Given that Pν(x) , Q ν(x)  solve 

(1−x2
) y ' '−2 x y'+ν(ν+1) y=0 (28)

by direct substitution one can verify that for integer m, (27) is
solved by the functions

u={
d m

d xm P ν(x)

d m

d xm Q ν(x)

(29)

We therefore have the  associated Legendre functions of the
first and second kind

Pν

m
(x)=(−1 )m(1−x 2

)
m/2 d m

d xm Pν(x)

Qν
m(x)=(−1 )m(1−x 2)m/2 d m

d xm
Qν(x)

(30)
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of order   and degree m. In the Appendix we derive several

of these for integer orders and degrees. Notice that in this case
both functions have closed-form expressions. Further note that
since  Pn(x)  is  an  nth  degree  polynomial,  Pn

m
(x)≡0  for

m>n .

General solution of Helmholtz equation

A general solution of the Helmholtz equation that is periodic
in ϕ  is

Ar=r{ jν (β r )
yν(βr)}{

Pν

m
(cosθ)

Qν
m(cosθ)}{cos(mϕ)

sin(mϕ)} (31)

where ν  is arbitrary. If we require a solution that is finite for

0≤≤  then  we  must  exclude  the  2nd kind  of  Legendre

functions and we must have ν=n  an integer

Ar=r{ j n(β r )
yn(βr)}Pn

m
(cosθ){cos (mϕ)

sin(mϕ)} (32)

Finally, if we require the solution to be finite at the origin we
are left with

Ar=r jn(β r) Pn
m
(cosθ){cos (mϕ)

sin (mϕ)} (33)

for n=0,1,2,…  and 0≤m≤n . 
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Appendix

The following Maxima code generates the functions Pn
m
 x .

N:3$

P[0,0]:1$
for n:1 step 1 thru N do (

P[n,0]:expand(
diff((x^2-1)^n,x,n)/((2^n)*n!)),

for m:1 step 1 thru n do (
P[n,m]:factor(((-1)^m)

*((1-x^2)^(m/2))*diff(P[n,0],x,m))
)

)$

for n:0 step 1 thru N do (
for m:0 step 1 thru n do (

display(P[n,m])
)

)$

The output is (notation: P
n , m
=P

n

m
 x )

The following Maxima code generates the functions Qn
m
 x .

N:3$

a[0]:1$ b[0]:0$
a[1]:x$ b[1]:-1$
Q[0,0]:(1/2)*log((1+x)/(1-x))$
for n:1 step 1 thru N do (

Q[n,0]:expand(a[n])*(log((1+x)/
(1-x))/2)+expand(b[n]),

a[n+1]:ratsimp(((2*n+1)/(n+1))*x
*a[n]-(n/(n+1))*a[n-1]),

b[n+1]:ratsimp(((2*n+1)/(n+1))*x
*b[n]-(n/(n+1))*b[n-1]),

for m:1 step 1 thru n do (
logfact:ratsimp(diff(a[n],x,m)),
ratterm:ratsimp(diff(Q[n,0],x,m)

-logfact*(log((1+x)/(1-x))/2)),
Q[n,m]:factor((-1)^m

*(1-x^2)^(m/2)*logfact)
*log((1+x)/(1-x))/2,

Q[n,m]:Q[n,m]+factor((-1)^m
*(1-x^2)^(m/2)*ratterm)

)
)$

for n:0 step 1 thru N do (
for m:0 step 1 thru n do (

display(Q[n,m])
)

)$

The output is (notation: Q
n , m

=Q
n

m
 x )
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