## Lecture 5b

## Legendre functions

## Legendre's equation

In the previous lecture we obtained the following equation for the $\theta$ dependence of a solution to the Helmholtz equation in spherical coordinates

$$
\begin{equation*}
g^{\prime \prime}+\frac{\cos \theta}{\sin \theta} g^{\prime}+\left[n(n+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] g=0 \tag{1}
\end{equation*}
$$

This is one form of the associated Legendre equation. The trig functions are not convenient to work with directly. Let's make the substitutions

$$
\begin{array}{r}
x=\cos \theta \\
y(x)=g(\theta) \tag{2}
\end{array}
$$

and note that $0 \leq \theta \leq \pi$ corresponds to $1 \geq x \geq-1$. We have

$$
\begin{equation*}
\frac{d g}{d \theta}=\frac{d y}{d x} \frac{d x}{d \theta}=-\sin \theta \frac{d y}{d x}=-\sqrt{1-x^{2}} \frac{d y}{d x} \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{d^{2} g}{d \theta^{2}} & =-\frac{d}{d \theta} \sin \theta \frac{d y}{d x} \\
& =\sin ^{2} \theta \frac{d^{2} y}{d x^{2}}-\cos \theta \frac{d y}{d x}  \tag{4}\\
& =\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}
\end{align*}
$$

The associated Legendre equation becomes

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left[n(n+1)-\frac{m^{2}}{1-x^{2}}\right] y=0 \tag{5}
\end{equation*}
$$

This form is much more convenient to work with. The special case $m=0$ gives the ordinary Legendre equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0 \tag{6}
\end{equation*}
$$

From the previous lecture we know that $m=0$ results in fields that have no $\phi$ dependence. We will solve the ordinary Legendre equation first and then use that solution to solve the associated equation.

## Legendre functions

The standard form of the ordinary Legendre equation is

$$
\begin{equation*}
y^{\prime \prime}-\frac{2 x}{1-x^{2}} y^{\prime}+\frac{v(v+1)}{1-x^{2}} y=0 \tag{7}
\end{equation*}
$$

were we've used $v$ instead of $n$ as our constant to emphasize its complete generality (although it will typically be an integer in our applications). The coefficient functions are wellbehaved at $x=0$ so we can find a solution of the form

$$
\begin{equation*}
y=\sum_{k=0}^{\infty} a_{k} x^{k} \tag{8}
\end{equation*}
$$

However, note that the coefficient functions have singularities at $x= \pm 1$ so we might expect problems at those points. More about that later.

Substituting the power series into the Legendre equation we get

$$
\begin{gather*}
\left(1-x^{2}\right) \sum_{k=2}^{\infty} k(k-1) a_{k} x^{k-2}-2 x \sum_{k=1}^{\infty} k a_{k} x^{k-1} \\
+v(v+1) \sum_{k=0}^{\infty} a_{k} x^{k}=0 \tag{9}
\end{gather*}
$$

Rearranging we obtain

$$
\begin{equation*}
\sum_{k=2}^{\infty} k(k-1) a_{k} x^{k-2}=\sum_{k=0}^{\infty}[k(k-1)+2 k-v(v+1)] a_{k} x^{k} \tag{10}
\end{equation*}
$$

which can be written

$$
\begin{equation*}
\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}=\sum_{k=0}^{\infty}[k(k-1)+2 k-v(v+1)] a_{k} x^{k} \tag{11}
\end{equation*}
$$

This gives us the recursion formula for the coefficients

$$
\begin{equation*}
a_{k+2}=\frac{(k+1+v)(k-v)}{(k+2)(k+1)} a_{k} \tag{12}
\end{equation*}
$$

where we've replaced $k(k-1)+2 k-v(v+1)$ by its equivalent $(k+1+v)(k-v)$. Clearly we can form two solutions, one starting with $a_{0}$ and containing even powers of $x$ and one starting with $a_{1}$ and containing odd powers of $x$. Taking $a_{0}=a_{1}=1$ we can write

$$
\begin{align*}
w_{0}(x)= & 1+\frac{(1+v)(-v)}{2!} x^{2} \\
& +\frac{(1+v)(-v)(3+v)(2-v)}{4!} x^{4}+\cdots \tag{13}
\end{align*}
$$

and

$$
\begin{align*}
w_{1}(x)= & x+\frac{(2+v)(1-v)}{3!} x^{3} \\
& +\frac{(2+v)(1-v)(4+v)(3-v)}{5!} x^{5}+\cdots \tag{14}
\end{align*}
$$

Let's use the ratio test to investigate the convergence of these series. We have

$$
\begin{equation*}
\left|\frac{a_{k+2} x^{k+2}}{a_{k} x^{k}}\right|=\frac{(k+1+v)(k-v)}{(k+2)(k+1)} x^{2} \rightarrow x^{2} \tag{15}
\end{equation*}
$$

as $k \rightarrow \infty$. The series converges absolutely if this limit is bounded by a number less than unity. Clearly this will only be the case for $|x|<1$. Therefore, we expect that these series will have convergence problems at $x= \pm 1$. In other words, the functions $w_{0,} w_{1}$ likely have singularities at $x= \pm 1$. Since $x=\cos \theta$ this corresponds to singularities at $\theta=0, \pi$, that is, at the "poles" of the unit sphere.

However, from (12) we see that if $v=n$ is a non-negative integer then one of these series will terminate at the $x^{n}$ term. Therefore one solution will be an $\mathrm{n}^{\text {th }}$ order polynomial and have no singularities. We call these solutions the Legendre polynomials. If $v=n$ is even, then $w_{0}(x)$ will be a polynomial while $w_{1}(x)$ will an infinite series with singularities at $x= \pm 1$. If $v=n$ is odd, then $w_{1}(x)$ will be a polynomial while $w_{0}(x)$ will have the singularities.
It is convenient to choose as our two basis function some linear combinations of $w_{0}(x), w_{1}(x)$, which we denote by $P_{v}(x), Q_{v}(x)$ as

$$
\begin{align*}
& P_{\mathrm{v}}(x)=a_{0} w_{0}(x)+a_{1} w_{1}(x) \\
& Q_{\mathrm{v}}(x)=b_{0} w_{0}(x)+b_{1} w_{2}(x) \tag{16}
\end{align*}
$$

such that for $v=n$ an integer (even or odd) $P_{n}(x)$ is always the polynomial. We can do this by defining the Legendre function of the first kind of degree $v$ as

$$
\begin{equation*}
P_{v}(x)=\left(-\frac{1}{2}\right)!\left[\frac{w_{0}(x)}{\left(\frac{v}{2}\right)!\left(-\frac{v+1}{2}\right)!}+\frac{v w_{1}(x)}{\left(-\frac{v}{2}\right)!\left(\frac{v-1}{2}\right)!}\right] \tag{17}
\end{equation*}
$$

To see how this works, recall that the factorial of a negative integer is infinite. If $v=n$ is a positive, even integer, then $(-v / 2)$ ! is infinite (it's the factorial of a negative integer), the second term in (17) is zero and

$$
\begin{equation*}
P_{v}(x)=\frac{\left(-\frac{1}{2}\right)!}{\left(\frac{n}{2}\right)!\left(-\frac{n+1}{2}\right)!} w_{0}(x) \tag{18}
\end{equation*}
$$

is a finite constant times the polynomial $w_{0}(x)$. Likewise, if $v=n$ is a positive, odd integer, then $(-[v+1] / 2)$ ! is infinite and

$$
\begin{equation*}
P_{v}(x)=\frac{v\left(-\frac{1}{2}\right)!}{\left(-\frac{v}{2}\right)!\left(\frac{v-1}{2}\right)!} w_{1}(x) \tag{19}
\end{equation*}
$$

is a finite constant times the polynomial $w_{1}(x)$. The function $Q_{v}(x)$ is the Legendre function of the second kind of degree $v$. It never reduces to a polynomial and always exhibits singularities at $x= \pm 1$.
Through a subtle application of complex contour integration techniques one can derive the integral representation

$$
\begin{equation*}
P_{v}(\cos \theta)=\frac{\sqrt{2}}{\pi} \int_{0}^{\theta} \frac{\cos ([v+1 / 2] t)}{\sqrt{\cos (t)-\cos (\theta)}} d t \tag{20}
\end{equation*}
$$

valid for all $v$ (see Lebedev for details).

## Integer-order Legendre functions

As mentioned previous, for $v=n$ the Legendre functions of the first kind reduce to polynomials. These are conveniently
represented by the Rodriguez formula

$$
\begin{equation*}
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \tag{21}
\end{equation*}
$$

The corresponding Legendre function of the second kind is

$$
\begin{equation*}
Q_{n}(x)=\frac{1}{2} P_{n}(x) \ln \left(\frac{1+x}{1-x}\right)-W_{n-1}(x) \tag{22}
\end{equation*}
$$

where $W_{n-1}(x)$ is a polynomial of order $n-1$. The $0^{\text {th }}$ order functions are

$$
\begin{align*}
& P_{0}(x)=1 \\
& Q_{0}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \tag{23}
\end{align*}
$$

while the $1^{\text {st }}$ order functions are

$$
\begin{align*}
& P_{1}(x)=x \\
& Q_{1}(x)=\frac{x}{2} \ln \left(\frac{1+x}{1-x}\right)-1 \tag{24}
\end{align*}
$$

Higher order function can be derived from the recursion formula

$$
\begin{equation*}
R_{n+1}(x)=\frac{2 n+1}{n+1} x R_{n}(x)-\frac{n}{n+1} R_{n-1}(x) \tag{25}
\end{equation*}
$$

## Associated Legendre functions

We have solved the "ordinary" Legendre equation and found the two solutions $P_{v}(x), Q_{v}(x)$. However, our final goal is to solve the associated Legendre equation. This is

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\left[v(v+1)-\frac{m^{2}}{1-x^{2}}\right] y=0 \tag{26}
\end{equation*}
$$

The substitution $y(x)=\left(1-x^{2}\right)^{m / 2} u(x)$ produced the following equation for $u$

$$
\begin{equation*}
\left(1-x^{2}\right) u^{\prime \prime}-2(m+1) x u^{\prime}+(v-m)(v+m+1) u=0 \tag{27}
\end{equation*}
$$

Given that $P_{v}(x), Q_{v}(x)$ solve

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+v(v+1) y=0 \tag{28}
\end{equation*}
$$

by direct substitution one can verify that for integer $m$, (27) is solved by the functions

$$
u=\left\{\begin{array}{l}
\frac{d^{m}}{d x^{m}} P_{v}(x)  \tag{29}\\
\frac{d^{m}}{d x^{m}} Q_{v}(x)
\end{array}\right.
$$

We therefore have the associated Legendre functions of the first and second kind

$$
\begin{align*}
& P_{v}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} P_{v}(x) \\
& Q_{v}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{m / 2} \frac{d^{m}}{d x^{m}} Q_{v}(x) \tag{30}
\end{align*}
$$

of order $v$ and degree $m$. In the Appendix we derive several of these for integer orders and degrees. Notice that in this case both functions have closed-form expressions. Further note that since $P_{n}(x)$ is an $\mathrm{n}^{\text {th }}$ degree polynomial, $P_{n}^{m}(x) \equiv 0$ for $m>n$.

## General solution of Helmholtz equation

A general solution of the Helmholtz equation that is periodic in $\phi$ is

$$
A_{r}=r\left\{\begin{array}{c}
j_{v}(\beta r)  \tag{31}\\
y_{v}\left(\beta_{r}\right)
\end{array}\right\}\left\{\begin{array}{c}
P_{v}^{m}(\cos \theta) \\
Q_{v}^{m}(\cos \theta)
\end{array}\right\}\left\{\begin{array}{c}
\cos (m \phi) \\
\sin (m \phi)
\end{array}\right\}
$$

where $v$ is arbitrary. If we require a solution that is finite for $0 \leq \theta \leq \pi$ then we must exclude the $2^{\text {nd }}$ kind of Legendre functions and we must have $v=n$ an integer

$$
A_{r}=r\left\{\begin{array}{c}
j_{n}(\beta r)  \tag{32}\\
y_{n}\left(\beta_{r}\right)
\end{array}\right\} P_{n}^{m}(\cos \theta)\left\{\begin{array}{c}
\cos (m \phi) \\
\sin (m \phi)
\end{array}\right\}
$$

Finally, if we require the solution to be finite at the origin we are left with

$$
A_{r}=r j_{n}(\beta r) P_{n}^{m}(\cos \theta)\left\{\begin{array}{c}
\cos (m \phi)  \tag{33}\\
\sin (m \phi)
\end{array}\right\}
$$

for $n=0,1,2, \ldots$ and $0 \leq m \leq n$.

## References

1. Hobson, E. W., The Theory of Spherical and Ellipsoidal Harmonics, Cambridge University Press, 1931.
2. Lebedev, N. N. Special Functions and Their Applications. Dover Publications 1972. ISBN 0-486-60624-4.
3. Carrier, G. F., M. Krook and C. E. Pearson. Functions of a Complex Variable. Hod Books 1983. ISBN 07-0100896.

## Appendix

The following Maxima code generates the functions $P_{n}^{m}(x)$.

```
N:3$
P[0,0]:1$
for n:1 step 1 thru N do (
    P[n,0]: expand (
        diff(( (x^2-1)^n,x,n)/((2^n)*n!)),
    for m:1 step 1 thru n do (
            P[n,m]:factor (((-1)^m)
                * ((1-x^2)^(m/2))*diff(P[n,0],x,m))
    )
) $
for n:0 step 1 thru N do (
    for m:0 step 1 thru n do (
            display(P[n,m])
    )
) $
```

The output is (notation: $P_{n, m}=P_{n}^{m}(x)$ )

$$
\begin{aligned}
& P_{0,0}=1 \\
& P_{1,0}=x \\
& P_{1,1}=-\sqrt{1-x^{2}} \\
& P_{2,0}=\frac{3 x^{2}}{2}-\frac{1}{2} \\
& P_{2,1}=-3 x \sqrt{1-x^{2}} \\
& P_{2,2}=-3(x-1)(x+1) \\
& P_{3,0}=\frac{5 x^{3}}{2}-\frac{3 x}{2} \\
& P_{3,1}=-\frac{3 \sqrt{1-x^{2}}\left(5 x^{2}-1\right)}{2} \\
& P_{3,2}=-15(x-1) x(x+1) \\
& P_{3,3}=15(x-1)(x+1) \sqrt{1-x^{2}}
\end{aligned}
$$

The following Maxima code generates the functions $Q_{n}^{m}(x)$. N: 3\$

```
a[0]:1$ b[0]:0$
a[1]:x$ b[1]:-1$
Q[0,0]:(1/2)*log((1+x)/(1-x))$
for n:1 step 1 thru N do (
    Q[n,0]:expand (a[n])*(log((1+x)/
            (1-x))/2) +expand (b[n]),
    a[n+1]:ratsimp(((2*n+1)/(n+1))*x
            *a[n]-(n/(n+1))*a[n-1]),
    b [n+1]:ratsimp(((2*n+1)/(n+1))*x
            *b[n]-(n/(n+1))*b[n-1]),
        for m:1 step 1 thru n do (
            logfact:ratsimp(diff(a[n],x,m)),
            ratterm:ratsimp(diff(Q [n,0],x,m)
                -logfact*(log((1+x)/(1-x))/2)),
            Q[n,m]:factor((-1)^m
                    * (1-x^2)^(m/2)*logfact)
                    * log((1+x)/(1-x))/2,
            Q[n,m]:Q[n,m]+factor((-1)^m
                    * (1-x^2)^(m/2)*ratterm)
    )
) $
for n:0 step 1 thru N do (
    for m:0 step 1 thru n do (
        display(Q[n,m])
    )
) $
```

The output is (notation: $Q_{n, m}=Q_{n}^{m}(x)$ )

$$
\begin{aligned}
& Q_{0,0}=\frac{\log \left(\frac{x+1}{1-x}\right)}{2} \\
& Q_{1,0}=\frac{x \log \left(\frac{x+1}{1-x}\right)}{2}-1 \\
& Q_{1,1}=\frac{x \sqrt{1-x^{2}}}{(x-1)(x+1)}-\frac{\sqrt{1-x^{2}} \log \left(\frac{x+1}{1-x}\right)}{2} \\
& Q_{2,0}=\frac{\left(\frac{3 x^{2}}{2}-\frac{1}{2}\right) \log \left(\frac{x+1}{1-x}\right)}{2}-\frac{3 x}{2} \\
& Q_{2,1}=\frac{\sqrt{1-x^{2}}\left(3 x^{2}-2\right)}{(x-1)(x+1)}-\frac{3 x \sqrt{1-x^{2}} \log \left(\frac{x+1}{1-x}\right)}{2} \\
& Q_{2,2}=\frac{x\left(3 x^{2}-5\right)}{(x-1)(x+1)}-\frac{3(x-1)(x+1) \log \left(\frac{x+1}{1-x}\right)}{2} \\
& Q_{3,0}=\frac{\left(\frac{5 x^{3}}{2}-\frac{3 x}{2}\right) \log \left(\frac{x+1}{1-x}\right)}{2}-\frac{5 x^{2}}{2}+\frac{2}{3} \\
& Q_{3,1}=\frac{x \sqrt{1-x^{2}}\left(15 x^{2}-13\right)}{2(x-1)(x+1)}-\frac{3 \sqrt{1-x^{2}}\left(5 x^{2}-1\right) \log \left(\frac{x+1}{1-x}\right)}{4} \\
& Q_{3,2}=\frac{15 x^{4}-25 x^{2}+8}{(x-1)(x+1)}-\frac{15(x-1) x(x+1) \log \left(\frac{x+1}{1-x}\right)}{2} \\
& Q_{3,3}=\frac{15(x-1)(x+1) \sqrt{1-x^{2}} \log \left(\frac{x+1}{1-x}\right)}{2}-\frac{x \sqrt{1-x^{2}}\left(15 x^{4}-40 x^{2}+33\right)}{(x-1)^{2}(x+1)^{2}}
\end{aligned}
$$

