Lecture 5a

Vectors and operators in spherical

 coordinates
Unit vectors and metric coefficients

Spherical coordinates r, θ, ϕ are defined by

$$
\begin{align*}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \tag{1}\\
& z=r \cos \theta
\end{align*}
$$

They are the coordinates of choice in problems with spherical boundaries. Since z is no longer one of the coordinates we will not be able to use A_{z} and F_{z} to specify the fields. This will lead to some subtleties. Let's first derive the unit vectors and the metric coefficients. Since

$$
\begin{equation*}
\frac{\partial \mathbf{r}}{\partial r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
h_{r}=\left|\frac{\partial \mathbf{r}}{\partial r}\right|=\sqrt{\sin ^{2} \theta\left[\cos ^{2} \phi+\sin ^{2} \phi\right]+\cos ^{2} \theta}=1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \tag{4}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
\frac{\partial \mathbf{r}}{\partial \theta}=r(\cos \theta \cos \phi, \cos \theta \sin \phi,-\sin \theta) \tag{5}
\end{equation*}
$$

so that

$$
\begin{equation*}
h_{\theta}=\left|\frac{\partial \mathbf{r}}{\partial \theta}\right|=r \sqrt{\cos ^{2} \theta\left[\cos ^{2} \phi+\sin ^{2} \phi\right]+\sin ^{2} \theta}=r \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{\theta}=(\cos \theta \cos \phi, \cos \theta \sin \phi,-\sin \theta) \tag{7}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\frac{\partial \mathbf{r}}{\partial \phi}=r(-\sin \theta \sin \phi, \sin \theta \cos \phi, 0) \tag{8}
\end{equation*}
$$

so

$$
\begin{equation*}
h_{\phi}=\left|\frac{\partial \mathbf{r}}{\partial \phi}\right|=r \sqrt{\sin ^{2} \theta\left[\cos ^{2} \phi+\sin ^{2} \phi\right]}=r \sin \theta \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{\phi}=(-\sin \phi, \cos \phi, 0) \tag{10}
\end{equation*}
$$

Using the metric coefficients, we are now ready to derive the various differential operators.

Differential operators

Using the results of Lecture 1 b for a general orthogonal coordinate system, and identifying $u=r, v=\theta, w=\phi$ we have the gradient

$$
\begin{equation*}
\nabla f=\hat{a}_{r} \frac{\partial f}{\partial r}+\hat{a}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\hat{a}_{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \tag{11}
\end{equation*}
$$

The divergence is

$$
\begin{align*}
\nabla \cdot \mathbf{A}= & \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial r}\left(r^{2} \sin \theta A_{r}\right) \\
& +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(r \sin \theta A_{\theta}\right) \tag{12}\\
& +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \phi}\left(r A_{\phi}\right)
\end{align*}
$$

Simplifying we obtain

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} A_{r}\right)+\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta A_{\theta}\right)+\frac{\partial}{\partial \phi} A_{\phi}\right] \tag{13}
\end{equation*}
$$

The curl is

$$
\begin{align*}
\nabla \times \mathbf{A}= & \frac{\hat{a}_{r}}{r^{2} \sin \theta}\left[\frac{\partial}{\partial \theta}\left(r \sin \theta A_{\phi}\right)-\frac{\partial}{\partial \phi}\left(r A_{\theta}\right)\right] \\
& +\frac{\hat{a}_{\theta}}{r \sin \theta}\left[\frac{\partial}{\partial \phi} A_{r}-\frac{\partial}{\partial r}\left(r \sin \theta A_{\phi}\right)\right] \tag{14}\\
& +\frac{\hat{a}_{\phi}}{r}\left[\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial}{\partial \theta} A_{r}\right]
\end{align*}
$$

Simplified (somewhat) we get

$$
\begin{align*}
\nabla \times \mathbf{A}= & \frac{\hat{a}_{r}}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}\right)-\frac{\partial}{\partial \phi} A_{\theta}\right] \\
& +\frac{\hat{a}_{\theta}}{r}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \phi} A_{r}-\frac{\partial}{\partial r}\left(r A_{\phi}\right)\right] \tag{15}\\
& +\frac{\hat{a}_{\phi}}{r}\left[\frac{\partial}{\partial r}\left(r A_{\theta}\right)-\frac{\partial}{\partial \theta} A_{r}\right]
\end{align*}
$$

The Laplacian is

$$
\begin{align*}
\nabla^{2} f= & \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial r}\left(r^{2} \sin \theta \frac{\partial f}{\partial r}\right) \\
& +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\frac{r \sin \theta}{r} \frac{\partial f}{\partial \theta}\right) \tag{16}\\
& +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \phi}\left(\frac{r}{r \sin \theta} \frac{\partial f}{\partial \phi}\right)
\end{align*}
$$

This simplifies to

$$
\begin{align*}
\nabla^{2} f & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right) \tag{17}\\
& +\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}
\end{align*}
$$

The Laplacian of a vector field is by definition

$$
\begin{equation*}
\nabla^{2} \mathbf{A} \equiv \nabla(\nabla \cdot \mathbf{A})-\nabla \times \nabla \times \mathbf{A} \tag{18}
\end{equation*}
$$

In cylindrical coordinates we avoided this expression because for $\mathbf{A}=\hat{a}_{z} A_{z}$ will simply had $\nabla^{2} \mathbf{A}=\hat{a}_{z} \nabla^{2} A_{z}$. Things are not as simple in spherical coordinates.

Helmholtz equation

The Helmholtz equation, which is independent of any coordinate system, is

$$
\begin{equation*}
\nabla^{2} \mathbf{A}+\beta^{2} \mathbf{A}=0 \tag{19}
\end{equation*}
$$

In general this will read

$$
\begin{equation*}
\nabla(\nabla \cdot \mathbf{A})-\nabla \times \nabla \times \mathbf{A}+\beta^{2} \mathbf{A}=0 \tag{20}
\end{equation*}
$$

This is a pretty ugly vector equation. However, recall from Lecture 2c that

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{j}{\omega}\left(\nabla \cdot \mathbf{E}+\nabla^{2} \psi\right) \tag{21}
\end{equation*}
$$

where ψ is an arbitrary scalar field. The divergence of \mathbf{A} is completely unconstrained by physics. We can make it be anything we want. Let's see if we can use this freedom to reduce our vector equation to a single scalar equation. Let's take

$$
\begin{equation*}
\mathbf{A}=\hat{a}_{r} A_{r} \tag{22}
\end{equation*}
$$

From the curl expression we see that these will be TM^{r} modes in which $H_{r} \equiv 0$. We have

$$
\begin{equation*}
\nabla \times \mathbf{A}=\frac{\hat{a}_{\theta}}{r} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} A_{r}-\frac{\hat{a}_{\phi}}{r} \frac{\partial}{\partial \theta} A_{r} \tag{23}
\end{equation*}
$$

Applying another curl we obtain

$$
\begin{align*}
& \nabla \times \nabla \times \mathbf{A} \\
&= \frac{\hat{a}_{r}}{r \sin \theta}\left[-\frac{\partial}{\partial \theta}\left(\sin \theta \frac{1}{r} \frac{\partial}{\partial \theta} A_{r}\right)-\left(\frac{\partial}{\partial \phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} A_{r}\right)\right] \tag{24}\\
&+\frac{\hat{a}_{\theta}}{r} \frac{\partial}{\partial r}\left(r \frac{1}{r} \frac{\partial}{\partial \theta} A_{r}\right)+\frac{\hat{a}_{\phi}}{r} \frac{\partial}{\partial r}\left(r \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} A_{r}\right)
\end{align*}
$$

Therefore

$$
\begin{align*}
&-\nabla \times \nabla \times \mathbf{A} \\
&= \frac{\hat{a}_{r}}{r^{2} \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} A_{r}\right)+\frac{1}{\sin \theta}\left(\frac{\partial^{2}}{\partial^{2} \phi^{2}} A_{r}\right)\right] \tag{25}\\
&-\frac{\hat{a}_{\theta}}{r} \frac{\partial}{\partial r} \frac{\partial}{\partial \theta} A_{r}-\frac{\hat{a}_{\phi}}{r \sin \theta} \frac{\partial}{\partial r} \frac{\partial}{\partial \phi} A_{r}
\end{align*}
$$

Since $\beta^{2} \mathbf{A}$ has only an r component, let's see if we can use $\nabla \cdot \mathbf{A}$ to cancel the θ, ϕ components of $-\nabla \times \nabla \times \mathbf{A}$. Let's
call $\nabla \cdot \mathbf{A}=f$ and remember that this scalar function can be anything we want it to be. $\nabla(\nabla \cdot \mathbf{A})$ is

$$
\begin{equation*}
\nabla f=\hat{a}_{r} \frac{\partial f}{\partial r}+\hat{a}_{\theta} \frac{1}{r} \frac{\partial f}{\partial \theta}+\hat{a}_{\phi} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \tag{26}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{1}{r} \frac{\partial f}{\partial \theta}-\frac{1}{r} \frac{\partial}{\partial r} \frac{\partial}{\partial \theta} A_{r}=0 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}-\frac{1}{r \sin \theta} \frac{\partial}{\partial r} \frac{\partial}{\partial \phi} A_{r}=0 \tag{28}
\end{equation*}
$$

then we will have achieved our goal. This is true if we take

$$
\begin{equation*}
f=\frac{\partial}{\partial r} A_{r} \tag{29}
\end{equation*}
$$

The operator $\nabla(\nabla \cdot \mathbf{A})-\nabla \times \nabla \times \mathbf{A}$ now has only the r component

$$
\begin{equation*}
\frac{\partial^{2} A_{r}}{\partial r^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial A_{r}}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} A_{r}}{\partial \phi^{2}} \tag{30}
\end{equation*}
$$

where $\partial^{2} A_{r} / \partial r^{2}$ is the r component of ∇f. We could add $\beta^{2} A_{r}$ to this and apply separation of variables. However, from a mathematical point of view it would be much preferred to if we could employ the scalar Laplacian operator. Now $\nabla^{2} A_{r}$ is

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial A_{r}}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial A_{r}}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} A_{r}}{\partial \phi^{2}} \tag{31}
\end{equation*}
$$

This is almost the same as (30), but the first terms differ. In fact

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial A_{r}}{\partial r}\right)=\frac{\partial^{2} A_{r}}{\partial r^{2}}+\frac{2}{r} \frac{\partial A_{r}}{\partial r} \tag{32}
\end{equation*}
$$

and we have an extra $(2 / r) \partial A_{r} / \partial r$ term. However, note that

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\left(\frac{A_{r}}{r}\right)\right)=\frac{1}{r} \frac{\partial^{2} A_{r}}{\partial r^{2}} \tag{33}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\nabla^{2}\left(\frac{A_{r}}{r}\right)=\frac{1}{r}\left[\frac{\partial^{2} A_{r}}{\partial r^{2}}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial A_{r}}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} A_{r}}{\partial \phi^{2}}\right] \tag{34}
\end{equation*}
$$

This tells us that the function $\psi=A_{r} / r$ satisfies the scalar Helmholtz equation

$$
\begin{equation*}
\nabla^{2} \psi+\beta^{2} \psi=0 \tag{35}
\end{equation*}
$$

in spherical coordinates. If we solve this equation, then the vector potential is obtained from $A_{r}=r \psi$.

Separation of variables

Let's take

$$
\begin{equation*}
\psi=f(r) g(\theta) h(\phi) \tag{36}
\end{equation*}
$$

The Helmholtz equation then reads

$$
\begin{align*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} f^{\prime} g h\right) & +\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta f g^{\prime} h\right) \tag{37}\\
& +\frac{1}{r^{2} \sin ^{2} \theta} f g h^{\prime \prime}+\beta^{2} f g h=0
\end{align*}
$$

Dividing through by $f g h$ we obtain

$$
\begin{align*}
\frac{1}{r^{2} f} \frac{\partial}{\partial r}\left(r^{2} f^{\prime}\right) & +\frac{1}{r^{2} g \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta g^{\prime}\right) \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \frac{h^{\prime \prime}}{h}+\beta^{2}=0 \tag{38}
\end{align*}
$$

Multiplying through by $r^{2} \sin ^{2} \theta$ we arrive at

$$
\begin{align*}
\frac{\sin ^{2} \theta}{f} \frac{\partial}{\partial r}\left(r^{2} f^{\prime}\right) & +\frac{\sin \theta}{g} \frac{\partial}{\partial \theta}\left(\sin \theta g^{\prime}\right) \tag{39}\\
& +\frac{h^{\prime \prime}}{h}+\beta^{2} r^{2} \sin ^{2} \theta=0
\end{align*}
$$

The $h^{\prime \prime} / h$ term depends only on ϕ and no other term depends on ϕ. By our usual argument this term must be a constant. Let's write

$$
\begin{equation*}
\frac{h^{\prime \prime}}{h}=-m^{2} \tag{40}
\end{equation*}
$$

where m^{2} is an arbitrary complex number (but m will typically be an integer) and

$$
h=\left\{\begin{array}{l}
\cos (m \phi) \tag{41}\\
\sin (m \phi)
\end{array}\right\}
$$

Replacing $h^{\prime \prime} / h$ in the Helmholtz equation and dividing through by $\sin ^{2} \theta$ we arrive at

$$
\begin{equation*}
\frac{1}{f} \frac{\partial}{\partial r}\left(r^{2} f^{\prime}\right)+\beta^{2} r^{2}+\frac{1}{g \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta g^{\prime}\right)-\frac{m^{2}}{\sin ^{2} \theta}=0 \tag{42}
\end{equation*}
$$

Notice that all r dependence is in the first two terms and all θ dependence is in the last two terms. Therefore

$$
\begin{equation*}
\frac{1}{g \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta g^{\prime}\right)-\frac{m^{2}}{\sin ^{2} \theta}=-n(n+1) \tag{43}
\end{equation*}
$$

where $-n(n+1)$ is an arbitrary complex constant (although n will usually be an integer). We have

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta g^{\prime}\right)+\left[n(n+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] g=0 \tag{44}
\end{equation*}
$$

or

$$
\begin{equation*}
g^{\prime \prime}+\frac{\cos \theta}{\sin \theta} g^{\prime}+\left[n(n+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] g=0 \tag{45}
\end{equation*}
$$

We will come back to this equation later. What remains of the Helmholtz equation is the r dependence

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r^{2} f^{\prime}\right)+\left[\beta^{2} r^{2}-n(n+1)\right] f=0 \tag{46}
\end{equation*}
$$

which expands to

$$
\begin{equation*}
r^{2} f^{\prime \prime}+2 r f^{\prime}+\left[\beta^{2} r^{2}-n(n+1)\right] f=0 \tag{47}
\end{equation*}
$$

Let's call

$$
\begin{gather*}
x=\beta r \\
y(x)=f(r) \tag{48}
\end{gather*}
$$

Using the Chain Rule we have

$$
\begin{equation*}
\frac{d f}{d r}=\frac{d y}{d x} \frac{d x}{d r}=\beta y^{\prime} \tag{49}
\end{equation*}
$$

and our equation becomes

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}+\left[x^{2}-n(n+1)\right] y=0 \tag{50}
\end{equation*}
$$

If it wasn't for the factor of 2 this would be in the form of Bessel's equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0 \tag{51}
\end{equation*}
$$

Since we've already solved Bessel's equation, it makes sense to look for a transformation that will covert our equation to Bessel's equation. Setting $y(x)=z(x) / \sqrt{x}$ we have

$$
\begin{align*}
y^{\prime} & =\frac{z^{\prime}}{\sqrt{x}}-\frac{z}{2 x^{3 / 2}} \\
y^{\prime \prime} & =\frac{z^{\prime \prime}}{\sqrt{x}}-\frac{z^{\prime}}{x^{3 / 2}}+\frac{3}{4} \frac{z}{x^{5 / 2}} \tag{52}
\end{align*}
$$

Substituting these expressions into (50) and multiplying through by \sqrt{x} results in

$$
\begin{equation*}
x^{2} z^{\prime \prime}+x z^{\prime}+\left[x^{2}-(n+1 / 2)^{2}\right] z=0 \tag{53}
\end{equation*}
$$

which is Bessel's equation with $v=n+1 / 2$. The solutions are linear combinations of the Bessel functions

$$
z=\left\{\begin{array}{l}
J_{n+1 / 2}(x) \tag{54}\\
Y_{n+1 / 2}(x)
\end{array}\right\}
$$

Therefore $y(x)$ is $1 / \sqrt{x}$ times a Bessel function. We are led to define the spherical Bessel functions

$$
\begin{align*}
& j_{n}(x)=\sqrt{\frac{\pi}{2 x}} J_{n+1 / 2}(x) \\
& y_{n}(x)=\sqrt{\frac{\pi}{2 x}} Y_{n+1 / 2}(x) \tag{55}
\end{align*}
$$

The r behavior of ψ is therefore a linear combination of $j_{n}(\beta r)$ and $y_{n}(\beta r)$. Since $A_{r}=r \psi$, our solutions will have
the form

$$
A_{r}=r\left\{\begin{array}{c}
j_{n}(\beta r) \tag{56}\\
y_{n}\left(\beta_{r}\right)
\end{array}\right\}\left\{\begin{array}{c}
P_{n}^{m}(\cos \theta) \\
Q_{n}^{m}(\cos \theta)
\end{array}\right\}\left\{\begin{array}{c}
\cos (m \phi) \\
\sin (m \phi)
\end{array}\right\}
$$

where $P_{n}^{m}(\cos \theta), Q_{n}^{m}(\cos \theta)$ are Legendre functions. We will derive these in the next lecture.

Fields

TM modes

Using (15) and $\mathbf{H}=(1 / \mu) \nabla \times \mathbf{A}, \quad \mathbf{E}=(-j / \omega \epsilon) \nabla \times \mathbf{H}$ with $\mathbf{A}=\hat{a}_{r} A_{r}$, we have

$$
\begin{align*}
& H_{r}=0 \\
& H_{\theta}=\frac{1}{\mu r \sin \theta} \frac{\partial}{\partial \phi} A_{r} \\
& H_{\phi}=-\frac{1}{\mu r} \frac{\partial}{\partial \theta} A_{r} \\
& E_{r}=\frac{j}{\omega \mu \epsilon r^{2} \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} A_{r}\right)+\frac{1}{\sin \theta} \frac{\partial^{2}}{\partial \phi^{2}} A_{r}\right] \tag{57}\\
& E_{\theta}=-\frac{j}{\omega \mu \epsilon r} \frac{\partial}{\partial r} \frac{\partial}{\partial \theta} A_{r} \\
& E_{\phi}=-\frac{j}{\omega \mu \epsilon r \sin \theta} \frac{\partial}{\partial r} \frac{\partial}{\partial \phi} A_{r}
\end{align*}
$$

TE ${ }^{r}$ modes
Using (15) and $\mathbf{E}=-(1 / \epsilon) \nabla \times \mathbf{F}, \quad \mathbf{H}=(j / \omega \mu) \nabla \times \mathbf{E}$ with $\mathbf{F}=\hat{a}_{r} F_{r}$, we have

$$
\begin{aligned}
& E_{r}=0 \\
& E_{\theta}=-\frac{1}{\epsilon r \sin \theta} \frac{\partial}{\partial \phi} F_{r} \\
& E_{\phi}=\frac{1}{\epsilon r} \frac{\partial}{\partial \theta} F_{r} \\
& H_{r}=\frac{j}{\omega \mu \epsilon r^{2} \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} F_{r}\right)+\frac{1}{\sin \theta} \frac{\partial^{2}}{\partial \phi^{2}} F_{r}\right] \\
& H_{\theta}=-\frac{j}{\omega \mu \epsilon r} \frac{\partial}{\partial r} \frac{\partial}{\partial \theta} F_{r} \\
& H_{\phi}=-\frac{j}{\omega \mu \epsilon r \sin \theta} \frac{\partial}{\partial r} \frac{\partial}{\partial \phi} F_{r}
\end{aligned}
$$

Appendix

The following Maxima code generates the spherical Bessel functions $j_{n}(x)$ and their Taylor series.

```
N:3$
j[0]:sin(x)/x$
j[1]:sin(x)/x^2-\operatorname{cos}(x)/x$
for n:1 step 1 thru N-1 do (
    j[n+1]:ratsimp(((2*n+1)/x)*j[n]-j[n-1])
) $
for n:0 step 1 thru N do (
    display(j[n]),
    j[n]:taylor(j[n],x,0,n+2),
    display(j[n])
) $
```

The output is (notation $j_{n}=j_{n}(x)$)

$$
\begin{aligned}
& j_{0}=\frac{\sin x}{x} \\
& j_{0}=1-\frac{x^{2}}{6}+\cdots \\
& j_{1}=\frac{\sin x}{x^{2}}-\frac{\cos x}{x} \\
& j_{1}=\frac{x}{3}-\frac{x^{3}}{30}+\cdots \\
& j_{2}=-\frac{\left(x^{2}-3\right) \sin x+3 x \cos x}{x^{3}} \\
& j_{2}=\frac{x^{2}}{15}-\frac{x^{4}}{210}+\cdots \\
& j_{3}=-\frac{\left(6 x^{2}-15\right) \sin x+\left(15 x-x^{3}\right) \cos x}{x^{4}} \\
& j_{3}=\frac{x^{3}}{105}-\frac{x^{5}}{1890}+\cdots
\end{aligned}
$$

The Taylor series show that $j_{n}(x)$ behaves as x^{n} for small x.

