
5a.1

Lecture 5a

Vectors and operators in spherical
coordinates

Unit vectors and metric coefficients

Spherical coordinates r ,θ ,ϕ  are defined by

x=r sin cos

y=r sin sin

z=r cos

(1)

They are the coordinates of choice in problems with spherical
boundaries. Since z is no longer one of the coordinates we will
not be able to use A z  and F z  to specify the fields. This will
lead to some subtleties. Let's first derive the unit vectors and
the metric coefficients. Since

∂ r
∂ r

=(sinθ cosϕ ,sinθ sinϕ ,cosθ) (2)

we have

hr=∣∂ r
∂ r∣=√sin 2

θ[cos 2
ϕ+sin2

ϕ]+cos2
θ=1 (3)

and

a
r
=sin cos , sin sin , cos (4)

Likewise

∂ r

∂
=r coscos ,cossin ,−sin  (5)

so that

h

=∣∂r

∂∣=r cos2  [cos2 sin2 ]sin2 =r (6)

and

a=cos cos ,cossin ,−sin (7)

Finally

∂ r

∂
=r −sin sin , sincos , 0 (8)

so

h

=∣∂ r

∂∣=r sin2 [cos2 sin2 ]=r sin (9)

and

a=−sin  , cos ,0 (10)

Using the metric coefficients, we are now ready to derive the
various differential operators.

Differential operators

Using  the  results  of  Lecture  1b  for  a  general  orthogonal
coordinate system, and identifying u=r , v=θ , w=ϕ  we have
the gradient

∇ f =a
r

∂ f

∂r
a

1

r

∂ f

∂
a

1

r sin

∂ f

∂
(11)

The divergence is

∇⋅A=
1

r2 sin

∂
∂ r

r2 sinAr 


1

r2 sin

∂

∂
r sinA


1

r2 sin

∂

∂
r A 

(12)

Simplifying we obtain

∇⋅A=
1

r2
∂
∂r

(r2 Ar)+
1

r sin θ [
∂
∂θ

(sinθ Aθ)+
∂

∂ϕ
Aϕ] (13)

The curl is

∇×A=
a r

r2 sin [
∂

∂
r sin A−

∂

∂
r A]


a

r sin [ ∂

∂
Ar−

∂

∂ r r sinA ]


a


r [ ∂
∂ r r A

 −
∂
∂

Ar]

(14)

Simplified (somewhat) we get

∇×A=
ar

r sin [ ∂

∂
sin A

−
∂

∂
A

]


a

r [ 1
sin

∂

∂
Ar−

∂

∂ r r A]


a


r [ ∂
∂ r r A

 −
∂

∂
Ar]

(15)

The Laplacian is

∇
2 f =

1

r2 sin

∂

∂ r r2 sin
∂ f

∂ r 


1

r2 sin

∂

∂ r sin

r

∂ f

∂ 


1

r2 sin

∂

∂ r

r sin

∂ f

∂
(16)

This simplifies to

∇
2 f  =  

1

r2

∂

∂ r r2 ∂ f

∂ r 
1

r 2sin

∂

∂ sin
∂ f

∂ 
           

1

r2 sin2


∂
2 f

∂
2

(17)
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The Laplacian of a vector field is by definition

∇
2 A≡∇ ∇⋅A−∇×∇×A (18)

In cylindrical coordinates we avoided this expression because
for  A=â z Az  will simply had  ∇

2A=â z ∇
2 Az .  Things are

not as simple in spherical coordinates.

Helmholtz equation

The  Helmholtz  equation,  which  is  independent  of  any
coordinate system, is

∇
2 A

2 A=0 (19)

In general this will read

∇ ∇⋅A −∇×∇×A
2 A=0 (20)

This  is  a  pretty ugly vector  equation.  However,  recall  from
Lecture 2c that

∇⋅A=
j


∇⋅E∇
2
  (21)

where   is an arbitrary scalar field. The divergence of  A is
completely  unconstrained  by  physics.  We  can  make  it  be
anything  we want.  Let's  see  if  we can  use  this  freedom to
reduce our vector  equation to a single scalar  equation. Let's
take

A=a
r

A
r

(22)

From  the  curl  expression  we  see  that  these  will  be  TMr

modes in which H
r
≡0 . We have

∇×A=
a

r
1

sin 

∂

∂
Ar−

a

r
∂

∂
Ar (23)

Applying another curl we obtain

  

∇×∇×A

  =
a

r

r sin  [− ∂

∂ sin
1

r
∂

∂
A

r− ∂

∂

1

r sin

∂

∂
A

r]
          

a

r
∂

∂ r r 1

r
∂

∂
A

r a

r
∂

∂ r r 1

r sin

∂

∂
A

r
(24)

Therefore

−∇×∇×A

       =
âr

r2sinθ [ ∂
∂θ (sinθ ∂

∂θ
A r)+ 1

sinθ ( ∂
2

∂2ϕ2
Ar)]

          − âθ

r
∂
∂ r

∂
∂θ

A r−
âϕ

r sinθ
∂
∂ r

∂
∂ϕ

A r

(25)

Since  
2 A  has only an  r component, let's see if we can use

∇⋅A  to cancel the θ ,ϕ  components of −∇×∇×A . Let's

call  ∇⋅A= f  and remember that this scalar function can be
anything we want it to be. ∇ (∇⋅A )  is

∇ f =âr
∂ f
∂ r

+ âθ

1
r
∂ f
∂θ

+âϕ

1
r sin θ

∂ f
∂ϕ

(26)

If

1
r
∂ f
∂θ

−
1
r

∂
∂ r

∂
∂θ

Ar=0 (27)

and

1
r sinθ

∂ f
∂ϕ

−
1

r sinθ
∂
∂ r

∂
∂ϕ

A r=0 (28)

then we will have achieved our goal. This is true if we take

f = ∂
∂ r

Ar (29)

The  operator  ∇ (∇⋅A )−∇×∇×A  now  has  only  the  r
component

∂
2 Ar

∂ r2 +
1

r2 sinθ

∂
∂θ (sin θ

∂ Ar

∂θ )+ 1

r2sin2
θ

∂
2 Ar

∂ϕ
2

(30)

where ∂
2 Ar /∂r 2

 is the r component of ∇ f . We could add
β

2 Ar  to  this  and  apply  separation  of  variables.  However,
from a mathematical point of view it would be much preferred
to  if  we could  employ the  scalar  Laplacian  operator.  Now
∇

2 Ar  is

1

r 2
∂
∂ r(r2 ∂Ar

∂ r )+ 1

r 2sinθ

∂
∂θ(sinθ

∂A r

∂θ )+ 1

r2sin2
θ

∂
2 Ar

∂ϕ
2

(31)

This is almost the same as (30), but the first terms differ. In
fact

1

r 2
∂
∂ r(r2 ∂Ar

∂ r )=
∂

2 Ar

∂ r2 +
2
r

∂ Ar

∂ r
(32)

and we have an extra (2 /r)∂ Ar/∂ r  term. However, note that

1

r 2
∂
∂ r(r2 ∂

∂ r(
A r

r ))=1
r

∂2 Ar

∂ r2
(33)

Therefore

∇
2( Ar

r )=1
r [∂

2 Ar

∂ r2 +
1

r2sin θ

∂
∂θ (sinθ

∂ Ar

∂θ )+ 1

r2 sin2
θ

∂
2 Ar

∂ϕ
2 ]
(34)

This  tells  us  that  the function  ψ=Ar /r  satisfies  the scalar
Helmholtz equation

∇
2
ψ+β

2
ψ=0 (35)

in spherical  coordinates.  If  we solve this equation,  then the
vector potential is obtained from Ar=r ψ .
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Separation of variables

Let's take 

ψ= f (r)g (θ)h(ϕ) (36)

The Helmholtz equation then reads

1

r 2
∂
∂ r

(r2 f ' g h )+ 1

r2sinθ

∂
∂θ

(sinθ f g ' h)

                         +
1

r2 sin2θ
f g h ' '+β2 f g h=0

(37)

Dividing through by fgh we obtain

1

r 2 f
∂
∂ r

(r2 f ' )+ 1

r2 g sinθ

∂
∂θ

(sinθ g ' )

                         +
1

r2 sin2θ

h ' '
h

+β2=0
(38)

Multiplying through by r2 sin2
  we arrive at 

sin2 

f

∂

∂ r
r2 f ' sin

g

∂

∂
sin g' 

                         
h' '

h


2r2 sin2
=0

(39)

The  h ' ' /h  term  depends  only  on    and  no  other  term

depends on   . By our usual argument this term must be a
constant. Let's write

h' '

h
=−m2

(40)

where m2 is an arbitrary complex number (but m will typically
be an integer) and

h={cosm

sin m } (41)

Replacing  h' ' /h  in  the  Helmholtz  equation  and  dividing
through by sin2   we arrive at

1

f

∂

∂ r
r 2 f ' 

2r 2


1

gsin

∂

∂
sin g ' − m 2

sin2

=0 (42)

Notice that all r dependence is in the first two terms and all 
dependence is in the last two terms. Therefore

1

gsin

∂

∂
sin  g' − m2

sin2

=−n n1 (43)

where −n n1  is an arbitrary complex constant (although n
will usually be an integer). We have

1

sin

∂

∂
sin g' [n n1−

m2

sin2
 ]g=0 (44)

or

g ' '
cos

sin
g' [nn1 −

m2

sin2
 ]g=0 (45)

We will come back to this equation later. What remains of the
Helmholtz equation is the r dependence

∂

∂ r
r 2 f ' [ 2r 2

−n n1 ] f =0 (46)

which expands to

r2 f ' '2 r f '[ 2 r2−n n1 ] f =0 (47)

Let's call

     x= r
y x= f r 

(48)

Using the Chain Rule we have

df
dr

=
dy
dx

dx
dr

=β y ' (49)

and our equation becomes

x2 y ' '+2 x y ' +[ x 2
−n (n+1)] y=0 (50)

If  it  wasn't for the factor of 2 this would be in the form of
Bessel's equation

x2 y ' '+x y '+(x 2−ν
2) y=0 (51)

Since we've already solved Bessel's equation, it makes sense to
look  for  a  transformation  that  will  covert  our  equation  to
Bessel's equation. Setting y (x)=z (x)/√ x  we have

 y '=
z '

√ x
−

z

2 x 3/2

y ' '=
z ' '

√x
−

z '

x3 /2 +
3
4

z

x5 /2

(52)

Substituting  these  expressions  into  (50)  and  multiplying
through by √ x  results in

x2 z' ' x z '[ x2−n1 /2 2 ] z=0 (53)

which is Bessel's equation with ν=n+1/2 . The solutions are
linear combinations of the Bessel functions

z={J n1/2 x 

Y n1/2 x } (54)

Therefore y (x)  is 1/√ x  times a Bessel function. We are led
to define the spherical Bessel functions

j n(x)=√ π

2 x
J n+1 /2(x)

yn(x)=√ π

2 x
Y n+1/ 2( x)

(55)

The  r behavior  of  ψ  is  therefore  a  linear  combination  of
jn(β r)  and y n(β r) . Since Ar=r ψ , our solutions will have

EE518: Advanced Electromagnetic Theory Scott Hudson 2015-04-22



5a.4

the form

Ar=r{ j n(β r )
y n(βr)}{

Pn
m
(cos θ)

Q n
m(cos θ)}{cos (m ϕ)

sin (m ϕ)} (56)

where Pn
m
(cosθ) ,Q n

m
(cosθ)  are Legendre functions. We will

derive these in the next lecture.

Fields

TMr modes 

Using (15) and  H=(1/μ)∇×A ,  E=(− j /ω ϵ)∇×H  with
A=âr Ar , we have

    

H r=0

H θ=
1

μ r sin θ
∂
∂ϕ

Ar

H ϕ=−
1

μ r
∂
∂θ

Ar

Er=
j

ωμ ϵ r2sinθ [ ∂
∂θ (sinθ ∂

∂θ
Ar)+ 1

sinθ
∂

2

∂ϕ2
Ar]

Eθ=−
j

ωμ ϵ r
∂
∂ r

∂
∂θ

Ar

Eϕ=−
j

ωμϵ r sin θ
∂
∂r

∂
∂ϕ

A r

(57)

TEr modes 

Using (15)  and  E=−(1 /ϵ)∇×F ,  H=( j /ωμ)∇×E  with
F=âr F r , we have

    

E r=0

Eθ=−
1

ϵ r sinθ
∂
∂ϕ

F r

Eϕ=
1
ϵ r

∂
∂θ

F r

H r=
j

ωμϵ r2 sinθ [ ∂
∂θ (sin θ ∂

∂θ
F r)+ 1

sinθ
∂

2

∂ϕ2
F r]

H θ=−
j

ωμϵ r
∂
∂ r

∂
∂θ

F r

H ϕ=−
j

ωμ ϵr sinθ
∂
∂ r

∂
∂ϕ

F r

(58)

Appendix

The  following Maxima code  generates  the  spherical  Bessel
functions jn x   and their Taylor series.

N:3$
j[0]:sin(x)/x$
j[1]:sin(x)/x^2-cos(x)/x$
for n:1 step 1 thru N-1 do (
  j[n+1]:ratsimp(((2*n+1)/x)*j[n]-j[n-1])
)$
for n:0 step 1 thru N do (
  display(j[n]),
  j[n]:taylor(j[n],x,0,n+2),
  display(j[n])
)$

The output is (notation j
n
= j

n
 x )

The Taylor series show that j
n
 x  behaves as x n  for small x.
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