Lecture S5a

Vectors and operators in spherical
coordinates

Unit vectors and metric coefficients

Spherical coordinates 7, 0,¢ are defined by

x=rsin6 cosdp
y=rsin 0sin ¢ (1)

z=rcos0

They are the coordinates of choice in problems with spherical
boundaries. Since z is no longer one of the coordinates we will
not be able to use 4. and F'. to specify the fields. This will
lead to some subtleties. Let's first derive the unit vectors and
the metric coefficients. Since

%z(sin(—)cosq),sinesinq),cosB) )
we have
h,:‘%‘zx/sinzﬁ[coszq)+sin2q)]+c0526=1 3)
and
erz(sin 0cos ¢, sin@sind, cos0) 4)
Likewise
or . .
%ZF (cosBcos ¢, cosOsind, —sin 0) (%)
so that
hy= g—zr\/cosze [cos® ¢ +sin® ¢ |+sin’ 0 =r (6)
and
ay=(cos 0 cos ¢, cos Osin ¢, —sin ) (7
Finally
or . . .
—=r(—sin0sin¢, sinOcos, 0) (®)
o
o
fa—; =7r/sin>0[cos® ¢ +sin’ p ]=7rsin0 9)
and

a,=(—sin ¢, cos,0) (10)

Using the metric coefficients, we are now ready to derive the
various differential operators.
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Differential operators

Using the results of Lecture 1b for a general orthogonal
coordinate system, and identifying u=r,v=0,w=¢ we have
the gradient

=a, : (1)
or r o060 rsin® 0 ¢
The divergence is
V-A= 1 o (r sin 0 4 )
r’sin@ Or
1 0
— rsin0A4 12
rsin® 00 ( o (12)
1 0
+ —(rd
r sin 0 8(1)( (b)
Simplifying we obtain
Lo(p L [o
VA= zﬁr( Ar)—l—rsm 30 (sm@Ae) ] (13)
The curl is
a, (o . o
VxA= —= | (rsin0d,)|--(r 4
¥’ sin 0 ae(rsm ¢) 6¢(r 9)
ay 0 0 .
— A, —— 04
rsin9|:6<|> ' ar(rsm ¢):| (14)
&0 10
* r 6r<rA9) GGA:|
Simplified (somewhat) we get
a, |0 0
VxA= —2 04— 4,
7sin © 86(sm ) od
al 1 9 d
+— — A ——I(rd
r[sine od 6r(r d’)] (15)
a,l 0
; [a_(rAe)_a_eA']
The Laplacian is
1
Vif= 9 rzsineﬂ
r’sin® or or
1 in 0
- 0 [rsin® 0 f (16)
r'sin0 oo\ r 00

L b o r of
r>sin® 0\ rsind o
This simplifies to

v2f — izi(’/ﬂﬂ)_’_%i(s]neﬂ)
r-or or | r°sin® 00 00 (17)

1 &
Fsin’ 0 0’

J’_
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The Laplacian of a vector field is by definition

V2A=V(V-A)-VxVxA (18)
In cylindrical coordinates we avoided this expression because
for A=a_A. will simply had V2A=&ZV2AZ. Things are
not as simple in spherical coordinates.
Helmbholtz equation

The Helmholtz equation, which is independent of any
coordinate system, is

VZA+B*A=0 (19)

In general this will read
V(VA)—V XVXA+B*A=0

This is a pretty ugly vector equation. However, recall from
Lecture 2c¢ that

(20)

VA=L(VE+Vy) 1)

where W is an arbitrary scalar field. The divergence of A is
completely unconstrained by physics. We can make it be
anything we want. Let's see if we can use this freedom to
reduce our vector equation to a single scalar equation. Let's
take

A=a 4

ror

(22)

From the curl expression we see that these will be TM'
modes in which H},EO . We have

aG 1 a a, o
VxA==-2 L4272y 23
rsin0op ~ r oo " 23)

Applying another curl we obtain

VxVxA
_0 Sineli/l‘ _ LLLA.
00 ro0 | \oprsinood

a
Lo 1 4,
r or\ rsin0o¢p

24)

-VxVxA

(25)

Since g*A has only an 7 component, let's see if we can use
V- A to cancel the 0,¢ components of —V XV XA . Let's
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call V-A=f and remember that this scalar function can be
anything we want it to be. V (V-A] is

V f=i f+a916f 1 of

56 "% 5me “ysind 0 (26)
If
10f 16 0 ,_
=50 r@raeAr 0 27)
and
L o0/ 1 0.2, (28)

rsin® 00  rsin® dr 0P

then we will have achieved our goal. This is true if we take

A :a_ar 4, (29)

The operator V(V-A)]-VxVXA now has only the r
component

o4, 1 g ( 04, ) | 04
—l sinf—=—~ |[+—— — (30
or’  r'sin0 L 06 r sin26 6(])2 )
where 0°4,/0r” is the r component of V /. We could add

B A, to this and apply separation of variables. However,
from a mathematical point of view it would be much preferred
to if we could employ the scalar Laplacian operator. Now

VZA, is

2
1o .04, 1 ( 6A) | 84,
= +—— sin© -
rzar( or ) 72sing 00 99 /" 47sin’0 o9’
This is almost the same as (30), but the first terms differ. In
fact

€2))

1 5(26A,,) 0’4, 204,
v i =—t
7 or or or

r or (32)

and we have an extra (2/7)04,/0r term. However, note that

1 o|z0(4||_194,
rror or\ r r or?
Therefore

A a A, 1 2 04, 1 0’4
VA — (sme ) -
r o0r°  r’sin® EL 96 ) sin26 6(])2

(34)

(33)

This tells us that the function W=4,/r satisfies the scalar
Helmbholtz equation

V2 y+p’p=0 35
in spherical coordinates. If we solve this equation, then the
vector potential is obtained from 4,=r1 .
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Separation of variables

Let's take
y=1(r)g(0)h(0) (36)
The Helmholtz equation then reads
l 6 2 ’ 1 8 . ’
'pgjbﬁfghh;zggggbmefgh)
(37
1 >
+——>=fgh''+ h=0
rsin’0 /8 bre
Dividing through by fgh we obtain
21 i(rzf’)—i- 5 1' %(smﬁg ')
for 7 gsin® (38)
S S +4%=0
r’sin’0 A
Multiplying through by ;%gin*e we arrive at
. 29 ino
L ENRYIE LIV
f or g 00 (39)

h/!
+7+Bzr25in29:0

The h''[/h term depends only on ¢ and no other term
depends on ¢ . By our usual argument this term must be a
constant. Let's write

h’f 2
=—m (40)
h

where m? is an arbitrary complex number (but m will typically
be an integer) and
e cos(mdo)
sin(m ¢)

in the Helmholtz equation and dividing

(41)

Replacing h''/h
through by sin*0 we arrive at
10 1 0 ?
L) —— - (sinog =0 (42)
for

gsin6 060 sin’0
Notice that all » dependence is in the first two terms and all g

dependence is in the last two terms. Therefore
1 0 ?
- —(sin Gg')— n

gsin6 00

=—n(n+1) (43)

sin” 0

where —n(n+1) is an arbitrary complex constant (although n
will usually be an integer). We have

5a.3

or

,, €os@
g '+

(45)

2
—g'+|n(n+1)- m2 g=0
sin© sin” 0

We will come back to this equation later. What remains of the
Helmbholtz equation is the » dependence

a—i(r2f’)+[[32r2—n(n+l)]f=0 (46)
which expands to
P2 f B —n(n+1)] =0 (47)
Let's call
X=pr
Jom £ )
Using the Chain Rule we have
L D&y, 49)
and our equation becomes
xzy”+2xy’+[x2—n(n+1)}y=0 (50)

If it wasn't for the factor of 2 this would be in the form of
Bessel's equation

(1

Since we've already solved Bessel's equation, it makes sense to
look for a transformation that will covert our equation to

Bessel's equation. Setting ¥ (x)=2z(x)/vx we have

xzy"+xy'+(x2—v2)y=0

z'! z
a2
2x

’

y:

X
ozl oz 3z 2

y _\/_;_x3/2+2x5/2
Substituting these expressions into (50) and multiplying

through by \/x results in

2 1

Xz +xz’+{x2—(n+1/2)2]z=O (53)

which is Bessel's equation with v=n+1/2 . The solutions are
linear combinations of the Bessel functions

z= Jn+1/2(x)
Yn +1/2 ( X )
Therefore y(x) is 1//x times a Bessel function. We are led
to define the spherical Bessel functions

(54

(55)

0. , m’
sin @ ﬁ(smeg )+[n(n+1)_sin26]g_0 (“44) The » behavior of W is therefore a linear combination of
J.(B7r) and y,(Br) . Since 4,=7V , our solutions will have
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the form

— 7.Br)|| Py (cos8)|[cos(m¢)
o [yn(ﬁr)”Q;"(cose)][Sin(mq))}

where P (cos0),0"(cos8) are Legendre functions. We will

derive these in the next lecture.

Fields

TM" modes

Using (15) and H=(1/u)VXA, E=(—jlwe)VXH with

Appendix

5a.4

The following Maxima code generates the spherical Bessel

(56)  functions j,(x) and their Taylor series.
N:3$

j[0]:sin(x)/x$

J[1]:sin(x) /x*2-cos (x) /x$

for n:1 step 1 thru N-1 do (

jIn+l]:ratsimp (((2*n+1)/x)*j[n]l-3[n-11)

) S

for n:0 step 1 thru N do (
display(jInl),
jIn]:taylor(j[n]l,x,0,n+2),
display (3 [n])

A=a,A, wehave )
H,=0 The output is (notation ; =; (x))
1 0
H,= L2
® ursin® 09 . sinz
) wr 09 “r — .’.1',‘2
Bt [ 2 (snopa)e—t 2 o=l
24 00 08 0ap2 " .
wuersing sinb g¢ (57) i = sinz cosx
L= _
=———J 0 0 4 x? T
" ouerordd’ z 3
be 0.0, SRR
o : r
wuersin® or 00 ) (2> —3)sinz+ 3z cosz
J2=— 73
TE" modes _ _13_2_:13_4
Using (15) and E=—(1/¢)VXF, H=(j/ou)V XE with 2= 15 210+
F=a,F,, wehave ) (622 —15)sinz 4 (152 —2%) cos
Js=— 1
E,=0 z
1 W SR
EO:_ersinG %F" =105~ 1890
p-Lorp
¢ ep00° - The Taylor series show that ; (x) behavesas x" for small x.
_ g( in-0 ) L &
H, = sin 0 25 F, |+— F,
’ wuerzsinﬂ[ae 0077 sin6 o¢’ (58)
J 0 @
Hy=— 02 0. F,
" wuerorod’
H :__.;ii[;"
" wuersin®dr oo’
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