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Lecture 4d

Wedge-shaped waveguides

Introduction

The Separation of Variables technique is useful in problems
where  each  part  of  the boundary corresponds  to  a  constant
value  of  one  of  the  coordinates.  For  example,  if
A= f   g h  z   then we can get  A=0  on the surface

=a  by  enforcing  the  scalar  equation  f  a =0 ,  or

∂ A/∂ =0  on =0  by enforcing g ' 0=0  and so on.
In the previous lecture we considered cylindrical waveguides
with PEC surfaces at  some value  =a .  In  this lecture we
want to see what happens if we add surfaces at fixed values of
 .  The  result  will  be  a  wedge-shaped  waveguide  as

illustrated below.

Figure 1: Cross section of wedge-shaped waveguide.

We will place one flat PEC surface at  =0 and another at

= .  These  surfaces  will  remove  the  “periodic  in   ”
requirement and impose additional boundary conditions which
will modify our previous solutions.

TEz modes

A general TEmn
z  mode which propagates in the z direction and

is finite at the origin is described by

F
z
  , , z=J{cos 

sin }e− j 
z

z
(1)

where  the  brace  notation  represents  an  arbitrary  linear
combination of the corresponding functions, and   need not
be  an  integer.  In  order  for  the  Helmholtz  equation  to  be
satisfied we require the condition




2  z
2=2   (2)

The boundary conditions are

fields finite at =0
E =0 at = a

E

=0 at =0, 

(3)

The first condition is met by using only the J Bessel function.

Then, since

E

=−

1


∂
∂ 

F z (4)

the third condition requires 

d

d {
cos 

sin }={−sin

cos  }=0 (5)

at =0  and at = . The condition at =0  tells us that
we should use the  cos   factor  for  F z  since that  will

give a factor of sin     in E  . At =  we then have

sin    =0 (6)

which requires

=m



(7)

In  general  these  will  be  non-integer  values.  However,  if
= /N  for  integer  N then  =m N  is  an  integer.  Our

solution therefore have the form

F
z
  , , z=F

0
J  cose

−j 
z

z (8)

with    given  by (7).  Note  that  m=0  is  acceptable  since

cos 0=1  does not vanish.

From the previous lecture we know that the condition at =a
requires the derivative of the Bessel function to be zero, that is

J  '   a =0 (9)

Therefore



=

x ' n

a
(10)

where

J  '  x '  n=0 (11)

for n=1,2,  . Therefore our modes are described by

F
z
  , , z=F

0
J





 cose

−j 
z
z

                =m




              =
x '

n

a

(12)

for  m=0,1,2, ,  n=1,2, . This is identical to the circular

waveguide TEmn
z  modes except that m is replaced by   and


0
=0 .  It  follows  that  the  E and  H fields  are  given  by

equations (14) and (15) of Lecture 4c with m  . We have
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E

=




F0 J





sin e− j z z

E=



F 0 J ' cose− j z z

E z=0

(13)

and

H =−



z


F 0 J  '  cose− j z z

H=
 z


F 0 J  sin e− j z z

H

=− j



2


F 0 J





cose− j z z

(14)

Resonant cavities

For rectangular waveguides we were able to form a resonate

cavity by placing PEC surfaces  at  z=0, c .  We can  do  the
same with a circular or wedge waveguide. Let's consider the

dominant  TE11
z

 mode and combine waves traveling the  ±z
directions. 

F
z
  , , z=J 1 cos −0F1e

− j 
z
z
F2 e

j 
z
z  (15)

where  =1.841/a .  Let's  put  PEC planes at  z=0, c .  This
adds the boundary conditions 

E=E=0   at  z=0,c (16)

Since

E=−
1



∂

∂
F

z

E=   
1


∂

∂
F

z

(17)

and neither of these expressions involves a  z derivative,  we
need to set 

0=F
1
F

2

0=F
1
e

− j 
z
c
F

2
e

j 
z
c

(18)

This requires that the z dependence of F
z

 be through a factor

sin 
z
z  with 

z
= p/c  and p=1,2, . We then have

F
z
  , , z=F

0
J

1cos−
0
sin 

z
z  (19)

Since



2


z

2
=

2
 (20)

the frequency of the first of these resonant modes ( p=1 ) is
fixed by

1.841

a 
2

c 
2

=2  (21)

hence

f
r
=

1

2 1.841

a 
2

c 
2

(22)
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