Lecture 4d

Wedge-shaped waveguides

Introduction

The Separation of Variables technique is useful in problems where each part of the boundary corresponds to a constant value of one of the coordinates. For example, if $A=f(\rho) g(\phi) h(z)$ then we can get $A=0$ on the surface $\rho=a$ by enforcing the scalar equation $f(a)=0$, or $\partial A / \partial \phi=0$ on $\phi=\phi_{0}$ by enforcing $g^{\prime}\left(\phi_{0}\right)=0$ and so on. In the previous lecture we considered cylindrical waveguides with PEC surfaces at some value $\rho=a$. In this lecture we want to see what happens if we add surfaces at fixed values of ϕ. The result will be a wedge-shaped waveguide as illustrated below.

Figure 1: Cross section of wedge-shaped waveguide.
We will place one flat PEC surface at $\phi=0$ and another at $\phi=\alpha$. These surfaces will remove the "periodic in ϕ " requirement and impose additional boundary conditions which will modify our previous solutions.

TE ${ }^{\text {z }}$ modes

A general $\mathrm{TE}_{m n}^{\mathrm{z}}$ mode which propagates in the z direction and is finite at the origin is described by

$$
F_{z}(\rho, \phi, z)=J_{v}\left(\beta_{\rho} \rho\right)\left\{\begin{array}{l}
\cos (\nu \phi) \tag{1}\\
\sin (v \phi)
\end{array}\right\} e^{-j \beta_{z} z}
$$

where the brace notation represents an arbitrary linear combination of the corresponding functions, and v need not be an integer. In order for the Helmholtz equation to be satisfied we require the condition

$$
\begin{equation*}
\beta_{\rho}^{2}+\beta_{z}^{2}=\omega^{2} \mu \epsilon \tag{2}
\end{equation*}
$$

The boundary conditions are

$$
\begin{gather*}
\text { fields finite at } \rho=0 \\
E_{\phi}=0 \text { at } \rho=a \tag{3}\\
E_{\rho}=0 \text { at } \phi=0, \alpha
\end{gather*}
$$

The first condition is met by using only the J Bessel function.

Then, since

$$
\begin{equation*}
E_{\rho}=-\frac{1}{\epsilon \rho} \frac{\partial}{\partial \phi} F_{z} \tag{4}
\end{equation*}
$$

the third condition requires

$$
\frac{d}{d \phi}\left\{\begin{array}{c}
\cos (v \phi) \tag{5}\\
\sin (v \phi)
\end{array}\right\}=v\left\{\begin{array}{c}
-\sin (v \phi) \\
\cos (\nu \phi)
\end{array}\right\}=0
$$

at $\phi=0$ and at $\phi=\alpha$. The condition at $\phi=0$ tells us that we should use the $\cos (\nu \phi)$ factor for F_{z} since that will give a factor of $\sin (\nu \phi)$ in E_{ρ}. At $\phi=\alpha$ we then have

$$
\begin{equation*}
\sin (\nu \alpha)=0 \tag{6}
\end{equation*}
$$

which requires

$$
\begin{equation*}
\nu=m \frac{\pi}{\alpha} \tag{7}
\end{equation*}
$$

In general these will be non-integer values. However, if $\alpha=\pi / N$ for integer N then $\nu=m N$ is an integer. Our solution therefore have the form

$$
\begin{equation*}
F_{z}(\rho, \phi, z)=F_{0} J_{v}\left(\beta_{\rho} \rho\right) \cos (v \phi) e^{-j \beta_{z} z} \tag{8}
\end{equation*}
$$

with v given by (7). Note that $m=0$ is acceptable since $\cos 0=1$ does not vanish.

From the previous lecture we know that the condition at $\rho=a$ requires the derivative of the Bessel function to be zero, that is

$$
\begin{equation*}
J_{v}{ }^{\prime}\left(\beta_{\rho} a\right)=0 \tag{9}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\beta_{\rho}=\frac{x^{\prime}{ }_{v n}}{a} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{v}^{\prime}\left(x_{v n}^{\prime}\right)=0 \tag{11}
\end{equation*}
$$

for $n=1,2, \ldots$. Therefore our modes are described by

$$
\begin{align*}
F_{z}(\rho, \phi, z) & =F_{0} J_{v}\left(\beta_{\rho} \rho\right) \cos (\nu \phi) e^{-j \beta_{z} z} \\
v & =m \frac{\pi}{\alpha} \tag{12}\\
\beta_{\rho} & =\frac{x_{v n}^{\prime}}{a}
\end{align*}
$$

for $m=0,1,2, \ldots, n=1,2, \ldots$. This is identical to the circular waveguide $\mathrm{TE}_{m n}^{z}$ modes except that m is replaced by v and $\phi_{0}=0$. It follows that the \mathbf{E} and \mathbf{H} fields are given by equations (14) and (15) of Lecture 4 c with $m \rightarrow v$. We have

$$
\begin{align*}
& E_{\rho}=\frac{\nu}{\epsilon \rho} F_{0} J_{v}\left(\beta_{\rho} \rho\right) \sin (v) e^{-j \beta_{z} z} \\
& E_{\phi}=\frac{\beta_{\rho}}{\epsilon} F_{0} J_{v}^{\prime}\left(\beta_{\rho} \rho\right) \cos (\nu \phi) e^{-j \beta_{z} z} \tag{13}\\
& E_{z}=0
\end{align*}
$$

and

$$
\begin{align*}
& H_{\rho}=-\frac{\beta_{\rho} \beta_{z}}{\omega \mu \epsilon} F_{0} J_{v}^{\prime}\left(\beta_{\rho} \rho\right) \cos (\nu \phi) e^{-j \beta_{z} z} \\
& H_{\phi}=\frac{v \beta_{z}}{\omega \mu \epsilon \rho} F_{0} J_{v}\left(\beta_{\rho} \rho\right) \sin (v \phi) e^{-j \beta_{z} z} \tag{14}\\
& H_{\rho}=-j \frac{\beta_{\rho}^{2}}{\omega \mu \epsilon} F_{0} J_{v}\left(\beta_{\rho} \rho\right) \cos (v \phi) e^{-j \beta_{z} z}
\end{align*}
$$

hence

$$
\begin{equation*}
f_{r}=\frac{1}{2 \pi \sqrt{\mu \epsilon}} \sqrt{\left(\frac{1.841}{a}\right)^{2}+\left(\frac{\pi}{c}\right)^{2}} \tag{22}
\end{equation*}
$$

Resonant cavities

For rectangular waveguides we were able to form a resonate cavity by placing PEC surfaces at $z=0, c$. We can do the same with a circular or wedge waveguide. Let's consider the dominant $\mathrm{TE}_{11}^{\mathrm{z}}$ mode and combine waves traveling the $\pm z$ directions.

$$
\begin{equation*}
F_{z}(\rho, \phi, z)=J_{1}\left(\beta_{\rho} \rho\right) \cos \left(\phi-\phi_{0}\right)\left(F_{1} e^{-j \beta_{z} z}+F_{2} e^{j \beta_{z} z}\right) \tag{15}
\end{equation*}
$$

where $\beta_{\rho}=1.841 / a$. Let's put PEC planes at $z=0, c$. This adds the boundary conditions

$$
\begin{equation*}
E_{\rho}=E_{\phi}=0 \text { at } z=0, c \tag{16}
\end{equation*}
$$

Since

$$
\begin{align*}
& E_{\rho}=-\frac{1}{\epsilon \rho} \frac{\partial}{\partial \phi} F_{z} \tag{17}\\
& E_{\phi}=\frac{1}{\epsilon} \frac{\partial}{\partial \rho} F_{z}
\end{align*}
$$

and neither of these expressions involves a z derivative, we need to set

$$
\begin{align*}
& 0=F_{1}+F_{2} \\
& 0=F_{1} e^{-j \beta_{z} c}+F_{2} e^{j \beta_{z} c} \tag{18}
\end{align*}
$$

This requires that the z dependence of F_{z} be through a factor $\sin \left(\beta_{z} z\right)$ with $\beta_{z}=p \pi / c$ and $p=1,2, \ldots$. We then have

$$
\begin{equation*}
F_{z}(\rho, \phi, z)=F_{0} J_{1}\left(\beta_{\rho} \rho\right) \cos \left(\phi-\phi_{0}\right) \sin \left(\beta_{z} z\right) \tag{19}
\end{equation*}
$$

Since

$$
\begin{equation*}
\beta_{\rho}^{2}+\beta_{z}^{2}=\omega^{2} \mu \epsilon \tag{20}
\end{equation*}
$$

the frequency of the first of these resonant modes $(p=1)$ is fixed by

