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Lecture 4c

Cylindrical waveguide

Introduction

In previous lectures we examined the fields in a rectangular
waveguide.  In  any  coordinate  system  which  keeps  the  z
coordinate of rectangular coordinates (any type of “cylindrical
coordinates”)   it  is  natural  to  examine waveguides  with the
type  of  cross  section appropriate  to  that  coordinate  system.
These fields will still have  z dependence of the form e− j z z ,
and the ideas of cutoff frequency and waveguide dispersion
will carry over from the rectangular case. 

Figure 1: Cylindrical waveguide geometry.

In  this  lecture  we  consider  cylindrical  waveguides  with
circular cross sections and PEC surfaces as illustrated above.

TEz modes

In  cylindrical  coordinates,  a  general  TEz  mode  which
propagates in the z direction is described by
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where  the  brace  notation  represents  an  arbitrary  linear
combination of the corresponding functions. In order for the
Helmholtz equation to be satisfied we have the condition
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where   ,  are  the  permeability  and  permittivity  of  the
material inside the waveguide.

In the rectangular waveguide we had boundary conditions at
the  four  surfaces  x =0, a ,  y=0, b .  For  the  cylindrical
waveguide the limits on    are  0 ≤≤ a , and the limits on

  are  0 ≤≤ 2 .  What are  the corresponding boundary
conditions?  Only  one  of  the  “boundaries”  =0, a ,

=0, 2  contains a PEC surface. The boundary conditions
at  =a  are that the tangential components of  E vanish. As

illustrated in the following figure,  since this is a  TEz  field

E z≡0  and the only tangential component is E  . 

Figure  2:  Boundary  conditions  for  cylindrical
waveguide.

What  about  the  “boundary” =0 ?  Although the field  need
not be zero there it must be finite, and that does constrain the
solution since the  Y m  functions blow up at the origin. The

=0, 2  “boundaries” represent  the same point  in space.
Therefore, the fields at =2   must be identical to the fields
at  =0 . In other words, the fields must be periodic in  

with  period  2 .  This  will  put  constraints  on  the  
functions.

Our complete “boundary conditions” read

fields have period 2  in 

fields are finite at  =0
E


= E z=0   at  = a

(3)

For  the  function  cosm   and  sinm   to  have  period

2  we must require that m be an integer. Other than that we
can take any combination of the cosine and sine. Since m is an
integer, the Bessel functions have to be of integer order. Since

∣Y m 0 ∣=∞  the second condition requires that we use only

the J m    functions in our solution. If we write a general
linear combination of the cosine and sine in the form

a cos m bsin m= F 0 cos m [ −0]  (4)

where

a= F 0 cos m 0 

b=F 0 sin  m 0 
(5)

then our potential will have the form 
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The third condition requires that the expression

E

=

1


∂
∂ 

F z (7)

vanish  at  =a .  Since  the    dependence  is  through  the

factor J m 

 , E

  will vanish if 
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Our boundary condition at =a  is therefore

J m '  


a =0 (9)

If  we  use  xmn '  to  denote  the  nth zero  of  J m '  x   (with

n=1,2,  ), then the allowable values for   are



=

xmn '
a

(10)

The zeros of some Bessel functions and their derivatives are
illustrated in the following figure.

Figure 3:  J m  x   for m=0,1,2 . Circles locate zeros
of the functions and their derivatives.

Numerically we find

function first zero second zero
J 0 x  2.405 5.520
J 0 '  x  3.832 7.016
J 1 x  3.832 7.016
J 1 '  x  1.841 5.331
J 2 x  5.136 8.417
J 2 '  x  3.054 6.706

(11)

With =x mn ' / a  where xmn '  is the nth zero of J m '  x  , our
solution is
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with

z=2  −


2 (13)

We refer to this as the TEmn
z  mode. 

The resulting electric field components are
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and the magnetic field components are
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Notice that the ratio of orthogonal  E and  H components is a
constant

E

H


=
E

−H


=


 z

(16)

Therefore the wave impedance for a TEz  mode is

Z=
 

 z
(17)

TMz modes

A general  TMmn
z  mode which propagates  in the  z direction

and is finite at the origin is described by
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The tangential components of E at =a  are

E
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Neither of these expressions involves a   derivative, so both

E  , E z  will  contain  a  factor  J m   .  The  boundary

condition at the PEC surface =a  will therefore be satisfied
if 

J
m
 a=0 (20)

If  we  use  xmn  to  denote  the  nth zero  of  J m  x   (with

n=1,2,  ), then the allowable values for   are
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and our solution is
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with
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z=2  −
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2 (23)

The resulting magnetic field components are
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and the electric field components are
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Notice that the ratio of orthogonal  E and  H components is a
constant

E

H 

=
E

−H 

=
 z
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Therefore the wave impedance for a TMz  mode is

Z=
 z

 
(27)

Cutoff

When  z =0  the mode no longer propagates along the z axis.
This defines the cutoff frequency

f c=
1

2 



 
(28)

Below the cutoff frequency  z  becomes imaginary and the
field decays exponentially as e−z z  with

 z=


2−2   (29)

From (11) we see that the lowest cutoff frequency will be that
of the TE11

z  mode

f c=
1

2 

1.841
a   

=
0.293
a   

(30)

The next lowest cutoff frequency will be that  of the  TM01
z

mode

f c=
1

2 

2.405
a   

=
0.383
a   

(31)

The TE11
z  is therefore the dominant mode and the waveguide

has single-mode operation over the frequency range

0.293
a   

 f 
0.383
a  

(32)

Dominant mode

The dominant TE11
z  mode has
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and
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The electric field components are

E=
1


F0 J 1 sin−0 e
− j  z z

E=



F0 J 1 '   cos −0 e− j z z

E z=0

(36)

and the magnetic field components are
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(37)

The Bessel function derivative can be conveniently calculated
using the formula 

J 1 '  x=
1
2 [ J 0 x−J 2 x ] (38)

The most general waveguide field

For the rectangular waveguide we saw that an arbitrary field
expanded in Fourier series corresponded to a superposition of
the waveguide modes. Therefore, any field that could exist in
the waveguide could be expanded in terms of the waveguide
modes. For the cylindrical waveguide we no longer have only
sines and cosines but also Bessel  functions.  Let's  see if  our
modes still form a “complete orthogonal set.” 

Consider a general  TMz  field described by Az  ,  , z  . In

the plane  z=0  and for  a particular  value  =0  this is  a

function of   alone. We can therefore expand it in a Fourier
series

A z 0,  ,0 =a 0∑
m=1

∞

a m cos m b msin m 

=∑
m=0

∞

Am cos m [−m ] 
(39)

Either form works and they are related by (5).

Now, if we repeat this process for different values of    we
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will  get  Fourier  coefficients  that  are  functions  of   .  The
formulas are

a0  =
1

2 
∫
0

2

F z  , , 0 d 

am   =
1


∫
0

2 

F z  ,  , 0 cos m d 

bm   =
1

∫
0

2 

F z  , ,0 sin  m d 

(40)

We would now like to expand these coefficient functions in
series  that  correspond  to  the    dependence  of  our  TEz

modes. But this involves Bessel functions instead of cosines
and sines. Can we do this? The answer is “yes” and the reason
is  Sturm-Liouville  theory.  The  Bessel  functions  J m   

satisfy the differential equation

f ' '  1


f ' 

2 −
m 2

2  f =0 (41)

This can easily be put into the Sturm-Liouville form

[ u    f ' ]' [v    w  ] f =0 (42)

to get

  f '  '  −
m2

  f =0 (43)

We have  =

2 ,  u  =w =  and  v   =−m2
/ . As

discussed in Lecture 1d, we know that the eigenfunctions of a
Sturm-Liouville problem form a complete,  orthogonal set of
functions  for  the  corresponding  boundary  conditions.
Therefore we know that the Bessel function can be used as the
basis for a generalized Fourier series of the form

f  =∑
n=1

∞

c n J m   mn  (44)

where  mn=x mn / a  and m is any fixed integer. This is often
called a Fourier-Bessel series. Note that we use only a single
order  of Bessel  function. What varies with  n is   mn .  This
idea  is  illustrated  in  the  following  figure  for  the  case  of
J   x  .

The coefficients are

cn=
∫
0

a

 f    J m  mn  d 

∫
0

a

 J m
2
  mn  d 

(45)

Applying  this  idea  to  the  am  , b m    functions,  for
example

am  =∑
n=1

∞

cmn J m   mn (46)

Figure  4:  The functions  J   x⋅x  n  where  x n  is

the n-th zero of J   x  .These can be used as the basis
of a generalized Fourier series over the interval [0,1]
in the same way the functions sin n  x   can be.

and using (5) we will end up with

A
z
 , , 0

     =∑
m

∑
n

A
mn

J
mmn

cos m [−
mn

]
(47)

Identifying this as a superposition of TMmn
z  modes, for other

values of z we can write

A
z
 , , z

     =∑
m

∑
n

A
mn

J
m mn

cos m [−
mn

]e
− j

zmn
z (48)

where

 zmn=2  −
 mn
2 (49)

Therefore, as for the rectangular waveguide,  any TMz  field
that  can  exist  inside  the  cylindrical  waveguide  can  be
represented as a superposition of our modes. By a very similar
process  we can  say  the  same  thing  about  any  TEz  field.
Combining these we can represent any solution to Maxwell's
equations that satisfies the waveguide boundary conditions as a
superposition  of  our  modes.  In  this  sense  they  tell  us
everything we need to know about the waveguide.
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