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Lecture 4b

Bessel functions

Introduction

In the previous lecture the separation of variables method led
to Bessel's equation

y' '
1
x

y '1−
2

x2  y=0 (1)

Here  we  use    instead  of  m to  emphasize  the  complete
generality  of  the  separation  constant  (arbitrary  complex
number).  Our  goal  in  this  lecture  is  to  obtain  the  general
solution of  this equation. The resulting  Bessel  functions are
among  the  most  commonly  encountered  so-called  special
functions.  They  naturally  arise  in  problems  in  cylindrical
coordinates  and  so are  sometimes called  cylinder  functions.
However,  we will  see  that  they  also  come  up  in  spherical
coordinates and other applications.

Before  attempting  a  rigorous  solution,  let's  examine  the
qualitative behavior of the solutions to this equation. When x
gets  very  large  1−2

/ x2
1  so  the  functions  will

approximately satisfy

y ' '  1
x

y ' y=0 (2)

This  is  independent  of  the  parameter   .  Moreover  if  we
neglect the  y ' /x  term (not rigorously valid, but we are just
“getting a feel”) we have  y ' ' y=0 . The solutions to this
are  simply  cos x , sin x  .  It  appears  that  as  x∞  the
solutions  for  any  value  of    will  oscillate  like  some
combination of cos x  ,sin  x  .

On  the  other  hand,  when  x gets  very  small
1−2

/ x 2
−

2
/x 2  and  the  functions  will  approximately

satisfy 

y ' '
1
x

y '−

2

x 2
y=0 (3)

The  solutions  to  this  are  y=x  , x−   when  ≠0  and

y=1, ln x   when =0 . So when x0  it appears that one
solution will go to zero as  x   while the other will blow up
like  x−  .  For  the  special  case  =0 ,  one  solution  will
approach a constant value while the other will blow up like
ln x  .

Generalized factorial function

In  developing  our  solutions  we  will  need  the  generalized
factorial function. This is

!=∫
0

∞

t  e−t dt (4)

Using integration by parts it is easy to show that

Figure  1:  Example  solutions  to  Bessel's  equation.
Thick  (red)  curves  have  =1 .  Thin  (blue)  curves
have  =1.5 .  Solid  curves  display  x   behavior  at

x0  while dotted curves display x−   behavior.

 1 != 1   ! (5)

Since 

∫
0

∞

e− t dt=1=0 ! (6)

we have

m!=∫
0

∞

tm e−t dt (7)

for  m=0,1,2,  where  m !=m m−1 m−2 ⋯1  is  the
regular  integer  factorial.  Alternately we can use the  gamma
function and write

!= 1  (8)

where

  =∫
0

∞

t −1 e− t dt (9)

Most  math  packages  will  evaluate  either  the  generalized
factorial (e.g., Maxima) or the gamma function (e.g., Scilab).
The generalized factorial function is well-defined for all real
numbers  except  the  negative  integers  where  it  “blows  up.”
Indeed

0 !=0 −1 !=1 (10)

implies −1 !=∞ . Then −1 !=−1− 2 !  etc. require that

−m !=±∞  for m=1,2, . A plot of the factorial function
is given in the following figure.

A useful  value  in  some applications  is  1/ 2!=/2 .  An
approximation valid for large values is the Stirling formula

!~21 /2 e− (11)
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For ≥8  this is good to within 1%. 

Figure 2: Generalized factorial function x!

Bessel functions of the 1st kind

Now  let's  solve  the  Bessel  equation  (1).  The  functions
p  x =1 /x  and q  x =1−2

/x 2  are singular at  x=0  but

x p  x , x 2 q  x   are  analytic,  so  we  need  to  use  the
Frobenious method. We look for solutions of the form

y x =xr∑
n=0

∞

a n xn
=∑

n=0

∞

a n x rn
(12)

where by assumption a0≠0 .  It is convenient to multiply (1)
through by x2  to obtain

x2 y ' ' x y' x2−2  y=0 (13)

Substituting the series and

  y ' x=∑
n=0

∞

rn a n xrn−1

y' ' x =∑
n=0

∞

rn rn−1 a n xr n−2
(14)

into the differential equation we obtain

    
∑
n=0

∞

[rn rn−1 a nrn a n−
2 an ] xrn

                                                        ∑
n=0

∞

a n xrn2
=0

(15)

Since

 rn  rn−1  rn −2= rn 2−2 (16)

we can write this as

∑
n=0

∞

[rn 2−2
]a n xrn

∑
n=2

∞

a n−2 xrn
=0 (17)

The coefficient of the x r  term is

 r2−2 a 0=0

This requires

r=± (18)

This  will  give  us  two  solutions  with  the  x0  behavior

y=x  , x−   that we would expect from our initial analysis. If

−− =2   is not an integer, then these are guaranteed to
be linearly independent. That is,    should not be integer or
half integer. (More on this later.)

The coefficient of the x r 1  term is

[  r1 2− 2] a 1=0 (19)

Except  for  the  special  case  r2= r1 2  which  requires

r=−1/ 2  (more on that later) we must have

a1=0 (20)

The coefficient of the x r n  term is

[ n± 2−2 ] an a n−2=0 (21)

This requires

an=−
an−2

 n± 2−2 (22)

We  see  that  a1=a 3= a 5=⋯=0  so  all  odd-numbered
coefficients are zero. Since

n± 2− 2=n 2± 2n =n n± 2  (23)

if we call n=2 k  we can write

a2k=−
a 2k−2

4 kk± 
(24)

for our coefficient recursion. Of the two solutions r=±  let's
start with r= . The first coefficient is arbitrary. Let's take

a0=
1

2 !
(25)

then

a2=−
1

2!

1
41 1 

a4=
1

2 !

1
4 1 1 

1
4 2 2 

(26)

and, since

4⋅4=22⋅2

1 2 =2!
!1 2 =2 !

(27)

we will have

a2k=−1 k
1

k !k !
1

2 22k (28)

Our solution is therefore
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J  x= x
2



∑
k=0

∞ −1 k

k !k ! x
2 

2k

(29)

We call this the Bessel function of the first kind of order  .
The process with r=−  results in

J−  x= x
2 

−

∑
k=0

∞ −1k

k!k− ! x
2 

2k

(30)

Provided   is not an integer, a general solution of (1) is

y  x =a J   x b J−   x  (31)

(We'll  see  below  that  half-integer    values  present  no
problem.) Since

[ 1
k1 !k1 ! x

2 
2 k1 

][ 1
k !k ! x

2
2k

]
−1

                                =  x /2 2

k1 k1 
0

(32)

as  k∞  for any fixed  x, we have that by the ratio test our
series solution converges for all values of x. 

Bessel functions of the second kind

In  the  Frobenius  method,  if  the  two  r values  differ  by  an
integer  then  our  second  solution  may  not  be  linearly
independent. If r==m  for non-negative integer m then one
solution is

Jm x= x
2

m

∑
k=0

∞ −1k

k !km ! x
2

2k

(33)

Our other solution is (formally)

J−m x= x
2 

−m

∑
k=0

∞ −1 k

k !k−m ! x
2

2k

(34)

However   k −m   will take on negative integer values when

km . Since ∣ k −m !∣=∞  in those cases the corresponding
terms will vanish. We are left with

J−m x = x
2 

−m

∑
k=m

∞ −1 k

k !  k−m ! 
x
2 

2k

(35)

Calling k=nm  we can write this as

J−m x= x
2 

−m

∑
n=0

∞ −1 nm

nm !n!
x
2 

2n2m

             =−1m x
2

m

∑
n=0

∞ −1n

n!nm! x
2

2n

             =−1m J m  x

(36)

Therefore  J−m x   is  clearly  not  linearly  independent  of

J m  x   and we need to find another solution for the integer-
order case.

Following the Frobenius method, the second solution will have

the form

Y m x = ln  x  J m x x−m∑
k=0

∞

b k x k
(37)

Writing this as  Y m  x = ln  x  J m x u  x   and plugging it
into the differential equation

x 2Y m ' 'x Y m ' x 2−m2 Y m=0 (38)

results in

x 2 u' ' x u ' x 2−m 2u=−2x J m '  x  (39)

for the inhomogeneous differential equation satisfied by

u=x−m∑
k=0

∞

b k x k
(40)

We  can  put  this  series  into  the  LODE  and  solve  for  the
coefficients bk  and obtain the second solution for the integer-

order case. However, it is awkward to use J   x , J−   x   as

solutions for    not  an  integer  and  then have to  switch to

J m  x , Y m  x   for   an integer. A way around this is to use

the Bessel function of the first kind, J   x  , as one solution
and then to define the Bessel function of the second kind as

Y  x ≡
J

x  cos − J

−
 x 

sin 
(41)

for any value of  . If   is not an integer then this is simply a

linear combination of J   x , J−   x  , so it solves the Bessel

equation and is linearly independent of  J   x  .  For    an
integer it becomes

Y m  x =
J m  x −1 m−J −m x 

sinm
=

0
0

(42)

so we need to take the limit. We can do using  L'Hospital's
rule. We obtain

Y m  x=lim
 m [

∂

∂
[ J  x cos  −J

−
 x ]

∂

∂
sin  ]

=lim
 m

∂ J  x 

∂ 
−−1 m

∂ J −  x

∂ 



(43)

Since J  x   contains a factor of x  and ∂ x/∂=x ln x
we see that  Y m  x  will contain the  ln x  behavior that we
would get by using the Frobenious method. Taking derivatives
with  respect  to    of  the  J   x , J−   x   series  is
complicated,  but  doable.  Following  through  with  the
calculation one obtains
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Y m  x=
2
 ln

x
2 J m x 

               −
1
 

x
2

−m

 ∑
k=0

m−1
m−k−1 !

k!  x
2

2k

               − 1
  x

2
m

∑
k=0

∞ −1 k

k!km !
hkhkm  x

2
2k

(44)

where  h0=0 ,  hk=1
1
2


1
3
⋯

1
k

 and  =0.5772  is

Euler's constant. 

Fourier series and integral forms

Bessel functions also arise in certain Fourier series, and this
leads to useful  integral forms for the functions. Consider the
function  cos x sin   which  comes  up  in  some  antenna
problems, among others places. Applying the Taylor series for
cos x  to this function we have

   cos x sin=1−
 xsin 2

2!

 xsin 4

4!
−
 x sin 6

6!
⋯ (45)

Now

sin2=
1−cos 2 

2

sin4
=

3−4cos 2 cos 4 
8

sin6
=

10−15 cos 2 6 cos 4−cos 6
32

(46)

and so on. Collecting all terms with the same   dependence
we obtain

cos x sin=[1−12 x2

2!
38  x 4

4!
− 1032  x6

6!
⋯]

        cos 2[ 12 x2

2!
− 48 x 4

4!
1532  x6

6!
⋯]

        cos 4[ 18 x4

4!
− 632  x6

6!
⋯]

        ⋯

(47)

This is a Fourier series for  cos x sin  . The “coefficients”
are  functions of  x which correspond to the power series  of
various Bessel functions as can be verified by comparing with
(33)

cos x sin=
        J 0x 2 J 2 x cos 2 2 J 4 x cos4 ⋯

(48)

Likewise, one finds

sin x sin =2 J 1 xsin 2 J 3 xsin 3⋯ (49)

Applying  the  normal  method  of  calculating  Fourier
coefficients we can therefore write

1
2 ∫−



cos x sin cosm  d ={J m x m even
0 m odd

(50)

and

1
2 ∫−



sin  xsin sinm  d ={ 0 m even
J m x m odd

(51)

Finally, since

cosx sin cos msin  xsin sin m=cos  xsin−m 
(52)

we have the integral form of J m  x 

J m  x =
1
2 ∫−



cos x sin −m  d  (53)

Equivalent forms are

J m x =
1

∫
0



cos  x sin −m  d  (54)

and

J m  x =
1
2 ∫−



e j x sin−m  d  (55)

These are valid only for non-negative integer values m. Using
complex contour integration more general integral forms can
be found (see the Carrier reference for details). For arbitrary
  one finds

J

 x = 1


∫
0



cos  x sin −  d 

               −
sin 

∫
0

∞

e− x sinh   d 

(56)

and

Y

 x = 1


∫
0



sin x sin − d 

              − 1

∫
0

∞

 e  e−   cos e−x sinh  d 

(57)

Note that the first of these reduces to our result for =m  an
integer. 

Asymptotic behavior

Asymptotic behavior in the limits x0 , x∞  is important
in  many applications.  The  x0  forms  follow directly  by
taking the first terms of the series solutions. We have

J 0 x ~1 Y 0 x~
2
 ln

x
2 

J

 x~ 1

! x
2 



Y

 x ~−

−1 !
  x

2 
− (58)

with =0.5772 . 
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Now let's treat  the  x∞  limit. It's  instructive to begin by
considering the substitution  y=u / x  as it  transforms (1)
into

u ' '1−
2
−1/4

x2 u=0 (59)

When  =1 /2  this  becomes  simply  u ' 'u=0  which has

solutions  sin x , cos x .  So  for  =1 /2  Bessel's  equation  is
exactly solved by sin x / x  and cos x / x . Multiplying by
constants to get the x0  behavior of (58) we obtain

J1 /2 x=    2
 x

sin x

Y 1 /2 x=− 2
 x

cos  x

(60)

Keep in mind that these are not asymptotic expressions, they
are exact  for all  x.  We see that  at least  some of the Bessel
functions  are  quite  simple!  Similarly  one  can  show  that
J
−1 /2 x=−Y 1 /2 x  and Y

−1 /2  x=J1 / 2 x . 

For arbitrary values of   "asymptotic analysis" provides the

x∞  asymptotic forms (see Carrier for details)

J   x~ 2 x
cosx−[21 ] 4 

Y

 x~ 2 x

sin x−[21 ]


4 
(61)

Unlike the  =1 /2  case, these are in general only valid for

x∞ . 

Recursion and derivative formulas

An interesting result can be obtained by considering the sum

J −1 x  J 1 x 

Using (29) the x−12k  term of this function will be

 x
2

 −1
−1 k

k !k−1 ! x
2

2k

    x
2 

1
−1 k−1

k−1 !k−11 !
x
2 

2k−2

           = x
2 

 −1

 x
2

2k
−1 k

k !k !
[ k −k ]

           =
2 
x  x

2 


 x
2 

2k
−1 k

k!k !

(62)

This is just  2 /x  times a term from the  J

 x  series. We

therefore have

J −1 x J 1 x =
2 
x

J   x  (63)

An almost identical process shows that

J
−1 x−J

1  x=2 J

'  x (64)

Using these and the definition of  Y

 x  one can show that

Y

 x  satisfies the same relations. So, with B

  representing

either J
  or Y

 , or indeed any linear combination of these,
we have

B 1 x=
2
x

B  x−B−1 x (65)

and

B

'  x = 1

2 [B −1 x −B
1 x ] (66)

The recursion (65) is very useful. For example, if are able to
calculate  just  J 0 x  and  J 1 x  then  we can  use  (65)  to

calculate  J 2 x , J 3 x ,  directly from J 0 x  and  J 1 x
without  having to  use  series  solutions  for  all  of  them. The
derivative  relation  (66)  is  quite  useful  because  Bessel
functions derivatives arise in many applications. This allows us
to calculate those directly from the Bessel functions. 

Half-integer-order Bessel functions

Starting with

J −1/2 x = 2
 x

cos  x

J 1/ 2 x= 2
 x

sin  x

(67)

we can use (65) to obtain  J m1 /2 x  for any integer  m. For
example

J 3 /2 x =
2 1 /2 

x
J 1/2 x−J −1/ 2 x

= 2 x
 [ sin  xx

−cos  x]
(68)

and so on. From the definition of Y

 x

Y m1 /2 x=
J m1 /2 x cos m1 /2 −J −m1 /2  x 

sinm1/2 

=−1 m1 J −m1 /2  x
(69)

We see that the half-integer Bessel functions are actually just
finite sums of elementary functions. These functions naturally
arise  in  spherical  coordinates,  and  we  will  call  something
closely related to them spherical Bessel functions. 

Wronskian

In  Bessel's  equation  p x =1 /x .  Therefore  the formula for
the Wronskian, equation (23) of Lecture 1c, is

W  x=W  x0 e
−∫

x0

x
dt
t
=W  x0

x0
x

(70)
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So the Wronskian behaves as a constant times the inverse of x.
Since this is true for all x, we can consider x0  and use the
small-argument asymptotic forms

J   xY  '  x−J  '  xY  x 

                   ~
1
!

x
2 


!

2 
x
2

− −1

                           
1

2 −1 ! x
2 

 −1
−1 !
  x

2 
−

                   =
2
 x

(71)

Therefore

J xY  '  x−J  '  xY x =
2
 x

(72)

for all x. This is useful in some applications. 

Hankel functions

The  x∞  asymptotic  forms  of  the  Bessel  functions  and
Euler's formula cos j sin=e j   suggest that combinations
of the form J


x± j Y


 x  might be useful. We are led to

define the Hankel functions of the 1st and 2nd kind as

H 

 1
 x=J   x jY   x

H


 2  x =J

 x− j Y


 x

(73)

Their asymptotic forms follow from (61)

H 
 1
 x~− j 


1
2  2 x

  e j x

H 

 2 
 x ~    j

 
1
2  2
 x

  e− j x

(74)

Here we've used

e
− jm12 2

=− j 
m

1
2 (75)

These  are  useful,  particularly  in  scattering  and  radiation
problems, because they correspond to  cylindrical waves. For
example

H 
 2 
  ~    j

 
1
2  2
 

  e− j  (76)

represents a wave that travels radially outward from the z axis
toward =∞ . 

Since the Hankel function are linear combinations of solutions
to Bessel's equation they are solutions to Bessel's equation. If
  and  x are  real  then  J  x  , Y   x  are  real.  In  this case
H 

 1
 x  , H 

 2 
 x   are complex conjugates of each other. Also,

we have

H 

 1
 xH 

 2 
 x = 2 J   x

H


 1 x−H


 2  x = j 2Y

 x

(77)

so the 1st and 2nd kind of Bessel functions can be written as
linear  combinations  of  the  Hankel  functions.  A  general
solution  to  Bessel's  equation  can  be  formed  from  a  linear
combination  of  any  two  of  the  four  functions
J  x  , Y   x , H 

 1
 x , H 

 2 
 x .  Note  that  for    real  and

non-negative, of these four functions only J  x   is finite at
x=0 . The other three functions have a singularity there. So if

we seek a solution that  is finite everywhere,  it  must be use
only J  x  .
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