
4a.1

Lecture 4a

Vectors and operators in cylindrical
coordinates

Cylindrical coordinates

General cylindrical coordinates u , v , z  keep the rectangular z
coordinate  and  specify the  x and  y  coordinates  in the form
x= f  u , v  , y=g  u , v  . If the curves u=const  are ellipses

or  hyperbolas  then  we  would  have  “elliptical  cylindrical
coordinates”  or  “hyperbolic  cylindrical  coordinates”  and  so
on.  The most important case is when u=const  describes a
circle in which case we have “circular cylindrical coordinates.”
These are used so much more than other types of cylindrical
coordinates that the term “cylindrical coordinates” implies the
circular type by default. 

We usually use the coordinate names  , , z  and write

x=cos
y=sin 

(1)

The curve =const  is a circle of radius   which is mapped
out as   varies over 0≤ 2  (or any interval of length

2 ).  The  position  vector  in  rectangular  coordinates

 x , y , z  is

r= cos  , sin , z (2)

We have

∂ r
∂ 

= cos  , sin , 0  (3)

so the corresponding metric coefficient is

∣∂ r
∂ ∣=h=1 (4)

and the unit vector “in the   direction” is

a

=a x cosa y sin (5)

Likewise

∂ r
∂ 

= − sin , cos  ,0  (6)

so

∣∂ r
∂ ∣=h= (7)

and

a

=−a x sin a y cos  (8)

To summarize, the unit vectors in cylindrical coordinates are

âρ=   â x cos ϕ+â y sinϕ
âϕ=−â x sin ϕ+â y cos ϕ

(9)

with az  unchanged from rectangular coordinates. 

Differential operators

Identifying  u= , v= , w=z  and  using  the  metric
coefficients  h=h z=1, h

=  we  can  apply  the  results  of
Lecture  1b  to  obtain  the  various  differential  forms  in
cylindrical coordinates. We have the gradient 

∇ f =a 

∂ f
∂

a
1


∂ f
∂

a z
∂ f
∂ z

(10)

the divergence

∇⋅A=
1


∂

∂
 A 

1


∂

∂
A 

∂

∂ z Az  (11)

the Laplacian

∇
2 f =

1
ρ

∂
∂ρ(ρ ∂ f

∂ρ )+ 1

ρ
2

∂
2 f

∂ϕ
2+

∂
2 f

∂ z2 (12)

and the curl

∇×A= a
[ 1


∂

∂
Az −

∂

∂ z 
A
 ]

 a
[ ∂

∂ z
 A

 −
∂

∂
Az ]


a z

 [ ∂

∂
 A

−
∂

∂
 A

]
(13)

Vector potentials

In rectangular coordinates we saw that we could describe an
arbitrary field using only the z components of the magnetic and
electric  vector  potentials.  In  cylindrical  coordinates  (of  all
types) we still have the z coordinate so the same idea applies
directly. We need only use the differential forms appropriate
for the new coordinate system.

In a source-free region

H=
1

∇×A

E=
− j
 

∇×H
(14)

If  A=a z Az  then  using  our  expression  for  the  curl  in

cylindrical coordinates we have the general TM z  field
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H ρ=  
1
μ ρ

∂
∂ϕ

A z

H ϕ=−
1
μ

∂
∂ρ

A z

H z=   0

Eρ=−
j

ωμϵ
∂
∂ρ

∂
∂ z

Az

Eϕ=−
j

ωμ ϵρ
∂
∂ϕ

∂
∂ z

Az

E z=−
j

ωμϵ [β2 Az+
∂

2

∂ z2
Az]

(15)

The  E z  expression  comes  from the  fact  that  (see  (10)  of
Lecture 2c)

E z=
j

  [ ∂2

∂ x 2
A z

∂2

∂ y2
A z] (16)

and 

∂2

∂ x 2
A z

∂2

∂ y 2
Az=−[ 2 Az ∂2

∂ z2
Az] (17)

since  A z  satisfies  the  Helmholtz  equation.  Likewise,  in  a
source-free region

E=−
1

∇×F

H=
j


∇×E

(18)

so if F=a z F z  we obtain the general TE z  field.

Eρ=−
1
ϵρ

∂
∂ϕ

F z

Eϕ=   
1
ϵ

∂
∂ρ

F z

E z=   0

H ρ=−
j

ωμ ϵ
∂
∂ρ

∂
∂ z

F z

H ϕ=−
j

ωμ ϵρ
∂
∂ϕ

∂
∂ z

F z

H z=−
j

ωμ ϵ[β2 F z+
∂

2

∂ z2
F z]

(19)

Any field can be represented as a linear combination of TM z

and TE z  components. 

Helmholtz equation

As before,  the  z component  of  either  A or  F satisfies  the
Helmholtz equation

∇2 Az2 A z=0 (20)

To get solutions in cylindrical coordinates we need to use the
corresponding  expression  for  the  Laplacian.  Applying  the
separation of variables idea, we look for a solution of the form
A z= f  g h z  . We then have

1


∂

∂  ∂ fgh∂  1

2
∂2 fgh

∂2

∂2 fgh

∂ z 2
2 fgh=0 (21)

Diving through by fgh  we obtain

1


 f ' '
f


1


2

g' '
g

h ' '
h


2
=0 (22)

where  f '= df / d   and  so  on.  We  can  isolate  the  z
dependence to get

h' '
h
=−[ 1  f ' '

f

1


2

g ' '
g


2] (23)

It follows that both sides must be equal to a constant. We write

h' '
h
=− z

2 (24)

where −z
2  is an arbitrary complex constant. In practice  z

will typically be a positive real number. The general solution
for  the  z dependence  can  be  represented  by  the  linear
combination

h  z ={e
− j  z z

e
j 

z
z } (25)

The Helmholtz equation now reads

1


 f ' '
f


1

2
g ' '
g

2− z
2=0 (26)

We can isolate the   dependence to get

g ' '
g

=−
2[ 1  f ' '

f


2
− z

2] (27)

We therefore have

g ' '
g

=−m2 (28)

We use  −m2  instead  of  −


2  as  our  separation  constant
because,  as  we'll  see,  most  often  m will  end  up  being  an
integer.  However,  nothing keeps  m from being an  arbitrary
complex number, so  −m2  is a completely general  complex
constant. The general solution for the   dependence can be
represented by the linear combination

g ={cos m

sin m} (29)

This leaves only the   dependence. We have

1
ρ

(ρ f ' ) '
f

−
m2

ρ
2 +β

2
−βz

2
=0 (30)

Let's call 

2=2− z
2  and multiply through by f  to get
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f ' '
1

f '[

2
−
m2


2 ] f =0 (31)

When analyzing differential equations it is usually best to put
them  in  a  form  where  all  parameters  are  dimensionless.
Dividing through by 

2  we obtain

1




2

d 2 f

d 2

1




2


d f
d 

[1− m2





2 ] f =0 (32)

Let's define

x= 

y x= f  
(33)

Here  x and  y are  simply  dimensionless  variables  and  not
rectangular coordinates. From the Chain Rule we have

d f
d ρ

=
d y
d x

d x
d ρ

=βρ y ' (34)

and likewise  d 2 f / d 
2
=

2 y ' ' . Applying these we get the
standard form of Bessel's equation:

y ' '+
1
x

y '+(1−
m2

x 2) y=0 (35)

Multiplying  through  by  x2  gives  a  form  that  is  more
convenient for analysis

x 2 y' '+x y '+( x 2
−m2) y=0 (36)

In the next lecture we will solve this equation in detail. Our
solutions will be called the  Bessel functions of the first and
second  kind  of  order  m,  and  will  be  denoted  by
J m  x , Y m  x  .  Our  solution  for  the    will  therefore  be

represented by the linear combination

f  ={Jm


Ym 
} (37)

Our general separation of variables solution has the form

A , , z={Jm 


Ym
}{cos m

sinm}{e
− j  z z

e j  z z } (38)

with the constraint




2
 z

2
=

2
(39)
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