Lecture 3i

Dielectric-Covered Ground Plane

Introduction

For wave guiding structures with PEC (or PMC) surfaces the Poynting vector is non-zero only inside the waveguide cross section (for example, $0 \leq x \leq a, 0 \leq y \leq b$). When waveguides are made with dielectric materials the field can extend outside of the guide, in principle all the way to infinity.

In this lecture we will consider the dielectric-covered ground plane waveguide. This structure combines both PEC and dielectric surfaces, as shown in the following figure.

Figure 1:Geometry of the dielectric-covered ground plane problem.
The plane $x=0$ is a PEC surface (the "ground plane"). This has a dielectric coating of thickness h. The permeability and permittivity of the dielectric are μ, ϵ. The region $x>h$ is air (essentially free space) with parameters $\mu_{0,} \epsilon_{0}$. The boundary conditions are

$$
\begin{gather*}
E_{y}=E_{z}=0 \text { at } x=0 \tag{1}\\
E_{y}, E_{z}, H_{y}, H_{z} \text { continuous at } x=h
\end{gather*}
$$

The subtlety is that the field will be propagating in two different media. While there is a field in the region $x>h$, if this structure is to act as a waveguide the field power density must in some sense be "concentrated" near the dielectric. Consequently we should seek solutions for which the field decays as $x \rightarrow \infty$.

TM ${ }^{\mathrm{z}}$ modes

We will investigate TM^{z} modes that propagate in the z direction. Since the boundary conditions at $x=h$ must hold for all y, z, the y and z dependence of the fields must be the same for both the $0 \leq x \leq h$ and $x>h$ regions. We will treat the relatively simple case in which there is no y dependence, and the z dependence of the fields has the form $e^{-j \beta_{z} z}$. For this case the non-zero field components are

$$
\begin{align*}
E_{x} & =-\frac{j}{\omega \mu \epsilon} \frac{\partial^{2}}{\partial x \partial z} A_{z} \\
E_{z} & =\frac{j}{\omega \mu \epsilon} \frac{\partial^{2}}{\partial x^{2}} A_{z} \tag{2}\\
H_{y} & =-\frac{1}{\mu} \frac{\partial}{\partial x} A_{z}
\end{align*}
$$

In the region $0 \leq x \leq h$ we can take

$$
A_{z}=A_{1}\left\{\begin{array}{c}
\cos \left(\beta_{1 \mathrm{x}} x\right) \tag{3}\\
\sin \left(\beta_{1 \mathrm{x}} x\right)
\end{array}\right\} e^{-j \beta_{z} z}
$$

where $\beta_{1 \mathrm{x}}^{2}+\beta_{z}^{2}=\omega^{2} \mu \epsilon$. Since we require $E_{z}=0$ at $x=0$ we need to use the $\sin \left(\beta_{1 x} x\right)$ factor for A_{z}. In the region $x>h$ we can take

$$
A_{z}=A_{0}\left\{\begin{array}{c}
e^{-j \beta_{0 x} x} \tag{4}\\
e^{j \beta_{0 x} x}
\end{array}\right\} e^{-j \beta_{z} z}
$$

where $\beta_{0 \mathrm{x}}^{2}+\beta_{z}^{2}=\omega^{2} \mu_{0} \epsilon_{0}$. To get wave guiding, we want this field to decay as $x \rightarrow \infty$. If $\beta_{0 \mathrm{x}}=-j \alpha_{0 \mathrm{x}}$ then $e^{-j \beta_{0 x} x}=e^{-\alpha_{0 x} x}$ and $-\alpha_{0 \mathrm{x}}^{2}+\beta_{z}^{2}=\omega^{2} \mu_{0} \epsilon_{0}$. Therefore, our solution has the form

$$
A_{z}=\left\{\begin{array}{cc}
A_{1} \sin \left(\beta_{1 x} x\right) e^{-j \beta_{z} z} & 0 \leq x \leq h \tag{5}\\
A_{0} e^{-\alpha_{0 x} x} e^{-j \beta_{z} z} & x>h
\end{array}\right.
$$

with

$$
\begin{align*}
\omega^{2} \mu_{0} \epsilon_{0} & =\beta_{z}^{2}-\alpha_{0 \mathrm{x}} \\
\omega^{2} \mu \epsilon & =\beta_{z}^{2}+\beta_{1 \mathrm{x}}^{2} \tag{6}
\end{align*}
$$

Subtracting the first of these equations from the second gives us the following relation between $\beta_{1 \mathrm{x}}, \alpha_{0 \mathrm{x}}$

$$
\begin{equation*}
\beta_{1 \mathrm{x}}^{2}+\alpha_{0 \mathrm{x}}^{2}=\omega^{2}\left(\mu \epsilon-\mu_{0} \epsilon_{0}\right) \tag{7}
\end{equation*}
$$

We now need to enforce continuity of

$$
\begin{align*}
& E_{z}=\frac{j}{\omega \mu \epsilon} \frac{\partial^{2}}{\partial x^{2}} A_{z} \\
& H_{y}=-\frac{1}{\mu} \frac{\partial}{\partial x} A_{z} \tag{8}
\end{align*}
$$

at $x=h$. Applied to expression (5) this gives us the following two equations

$$
\begin{gather*}
\frac{1}{\mu \epsilon}\left(-\beta_{1 \mathrm{x}}^{2}\right) A_{1} \sin \left(\beta_{1 \mathrm{x}} h\right)=\frac{1}{\mu_{0} \epsilon_{0}} \alpha_{0 \mathrm{x}}^{2} A_{0} e^{-\alpha_{0 \mathrm{x}} h} \tag{9}\\
\frac{1}{\mu} \beta_{1 \mathrm{x}} A_{1} \cos \left(\beta_{1 \mathrm{x}} h\right)=\frac{1}{\mu_{0}}\left(-\alpha_{0 \mathrm{x}}\right) A_{0} e^{-\alpha_{0 \mathrm{x}} h}
\end{gather*}
$$

At this point we would like to solve for $\beta_{1 \mathrm{x}}, \alpha_{0 \mathrm{x}}$ (we can worry about A_{0}, A_{1} later). Dividing the first equation by the second gives us the single equation

$$
\begin{equation*}
\frac{1}{\epsilon} \beta_{1 \mathrm{x}} \tan \left(\beta_{1 \mathrm{x}} h\right)=\frac{1}{\epsilon_{0}} \alpha_{0 \mathrm{x}} \tag{10}
\end{equation*}
$$

Together with (7) this gives us two equations in the two unknowns $\beta_{1 \mathrm{x}}, \alpha_{0 \mathrm{x}}$. A change to dimensionless variables is convenient. Let $u=\beta_{1 \mathrm{x}} h, w=\alpha_{0 \mathrm{x}} h$ and $\epsilon_{r}=\epsilon / \epsilon_{0}$. Then the previous equation reads

$$
\begin{equation*}
w=\frac{1}{\epsilon_{r}} u \tan (u) \tag{11}
\end{equation*}
$$

Multiplying (7) by h^{2} we have

$$
\begin{equation*}
\beta_{1 \mathrm{x}}^{2} h^{2}+\alpha_{0 \mathrm{x}}^{2} h^{2}=\omega^{2} h^{2}\left(\mu \epsilon-\mu_{0} \epsilon_{0}\right) \tag{12}
\end{equation*}
$$

This becomes

$$
\begin{equation*}
u^{2}+w^{2}=V^{2} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
V=\omega h \sqrt{\mu \epsilon-\mu_{0} \epsilon_{0}} \tag{14}
\end{equation*}
$$

is called the normalized frequency. It is dimensionless and proportional to the frequency. Our two equations can therefore be written

$$
\begin{align*}
& w=\frac{1}{\epsilon_{r}} u \tan (u) \tag{15}\\
& w=\sqrt{V^{2}-u^{2}}
\end{align*}
$$

These are represented graphically in the following figure.

Figure 2: Graphical solution of equations (15) for $T M^{2}$ modes. Vertical axis is " w " while horizontal axis is " u ". In the case plotted $V=5$ and $\epsilon_{r}=2$. Each intersection gives a solution and corresponds to a particular mode.

The equation $w=\sqrt{V^{2}-u^{2}}$ represents a circle of radius V. Since $u \tan u$ goes from 0 to infinity as u ranges over $k \pi \leq u \leq(k+1 / 2) \pi$ for integer k, the equation $w=\left(1 / \epsilon_{r}\right) u \tan (u)$ produces a series of curves starting at $u=k \pi, w=0$ and extending to $u=(k+1 / 2) \pi, w=\infty$.
Each intersection of one of these curves with the circle $w=\sqrt{V^{2}-u^{2}}$ gives a solution of the system (15). This gives particular u, w values which in turn give particular $\beta_{1 \mathrm{x}}, \mathrm{\alpha}_{0 \mathrm{x}}$ values. From there β_{z} can be obtained. Finally, A_{1} or A_{0} can be arbitrarily specified and the other solved for using (9).
As frequency decreases, V decreases and the circle $w=\sqrt{V^{2}-u^{2}}$ shrinks. If $V<k \pi$ there will be no intersection between the circle and the curve passing through $u=k \pi, w=0$, and that mode will not propagate (it will be below cutoff). The mode cutoff frequencies are therefore given by $\omega h \sqrt{\mu \epsilon-\mu_{0} \epsilon_{0}}=k \pi$ or

$$
\begin{equation*}
f_{k}=\frac{k}{2 h \sqrt{\mu \epsilon-\mu_{0} \epsilon_{0}}} \tag{16}
\end{equation*}
$$

for $k=0,1,2, \ldots$.

Dominant mode

For $f<1 /\left(2 h \sqrt{\mu \epsilon-\mu_{0} \epsilon_{0}}\right)$, or $V<\pi$, only one TM^{z} mode exists, the TM_{0}^{z} mode. This mode has no cutoff frequency (that is, the "cutoff frequency" is zero). An analysis of the TE^{z} modes shows that the lowest TE^{z} cutoff frequency is $V=\pi / 2$ or $f=1 /\left(4 h \sqrt{\mu \epsilon}-\mu_{0} \epsilon_{0}\right)$. Therefore, if $V<\pi / 2$ or $f<1 /\left(4 h \sqrt{\mu \epsilon-\mu_{0} \epsilon_{0}}\right)$ the waveguide has single-mode operation in the dominant TM_{0}^{z} mode.

Suppose we have specific values for ϵ, μ and h. Let's trace through the steps required to calculate dominant mode fields. First, given the frequency ω, we calculate the normalized frequency

$$
\begin{equation*}
V=\omega h \sqrt{\mu \epsilon-\mu_{0} \epsilon_{0}} \tag{17}
\end{equation*}
$$

Second, solve (15) graphically, or solve

$$
\begin{equation*}
\frac{1}{\epsilon_{r}} u \tan (u)=\sqrt{V^{2}-u^{2}} \tag{18}
\end{equation*}
$$

for u. This equation does not have a closed-form solution. However, if u is small enough that $\tan u \approx u$ is valid, then it reduces to $u^{2}=\epsilon_{r} \sqrt{V^{2}-u^{2}}$, or

$$
\begin{equation*}
u^{4}+\epsilon_{r}^{2} u^{2}-\left(\epsilon_{r} V\right)^{2}=0 \tag{19}
\end{equation*}
$$

which is a quadratic in u^{2} and can be solved analytically to give

$$
\begin{equation*}
u=\frac{\epsilon_{r}}{\sqrt{2}}\left(\sqrt{1+\left(2 \mathrm{~V} / \epsilon_{r}\right)^{2}}-1\right)^{1 / 2} \tag{20}
\end{equation*}
$$

In any case your u value fixes

$$
\begin{equation*}
\beta_{1 \mathrm{x}}=\frac{u}{h} \tag{21}
\end{equation*}
$$

Third, $w=\sqrt{V^{2}-u^{2}}$ fixes

$$
\begin{equation*}
\alpha_{0 x}=\frac{\sqrt{V^{2}-u^{2}}}{h} \tag{22}
\end{equation*}
$$

Fourth, solve for β_{z} using

$$
\begin{equation*}
\beta_{z}=\sqrt{\omega^{2} \mu \epsilon-\beta_{1 \mathrm{x}}^{2}} \tag{23}
\end{equation*}
$$

Fifth, chose a value for either A_{0} or A_{1} and use one of equations (9) to solve for the other. For instance, multiplying the second of these by μh gives

$$
\begin{equation*}
A_{1} u \cos u=-A_{0} \mu_{r} w e^{-w} \tag{24}
\end{equation*}
$$

You now have the complete solution

$$
A_{z}=\left\{\begin{array}{cc}
A_{1} \sin \left(\beta_{1 x} x\right) e^{-j \beta_{z} z} & 0 \leq x \leq h \tag{25}\\
A_{0} e^{-\alpha_{\alpha x} x} e^{-j \beta_{z} z} & x>h
\end{array}\right.
$$

Sixth, and finally, use

$$
\begin{align*}
E_{x} & =-\frac{j}{\omega \mu \epsilon} \frac{\partial^{2}}{\partial x \partial z} A_{z} \\
E_{z} & =\frac{j}{\omega \mu \epsilon} \frac{\partial^{2}}{\partial x^{2}} A_{z} \tag{26}\\
H_{y} & =-\frac{1}{\mu} \frac{\partial}{\partial x} A_{z}
\end{align*}
$$

to calculate the field components. The field inside the dielectric is

$$
\begin{align*}
& E_{x}=-A_{1} \frac{\beta_{1 \mathrm{x}} \beta_{z}}{\omega \mu \epsilon} \cos \left(\beta_{1 \mathrm{x}} x\right) e^{-j \beta_{z} z} \\
& E_{z}=-j A_{1} \frac{\beta_{1 \mathrm{x}}^{2}}{\omega \mu \epsilon} \sin \left(\beta_{1 \mathrm{x}} x\right) e^{-j \beta_{z} z} \tag{27}\\
& H_{y}=-A_{1} \frac{\beta_{\mathrm{x}}}{\mu} \cos \left(\beta_{1 \mathrm{x}} x\right) e^{-j \beta_{z} z}
\end{align*}
$$

Or, calling

$$
\begin{equation*}
E_{1}=-A_{1} \frac{\beta_{1 \mathrm{x}} \beta_{z}}{\omega \mu \epsilon} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{1}=\frac{\beta_{z}}{\omega \epsilon} \tag{29}
\end{equation*}
$$

we have

$$
\begin{aligned}
E_{x} & =E_{1} \cos \left(\beta_{1 \mathrm{x}} x\right) e^{-j \beta_{z} z} \\
E_{z} & =j \frac{\beta_{1 \mathrm{x}}}{\beta_{z}} E_{1} \sin \left(\beta_{1 \mathrm{x}} x\right) e^{-j \beta_{z} z} \\
H_{y} & =\frac{E_{1}}{Z_{1}} \cos \left(\beta_{1 \mathrm{x}} x\right) e^{-j \beta_{z} z}
\end{aligned}
$$

The Poynting vector is

$$
\begin{equation*}
\mathbf{P}_{1}=\hat{a}_{z} \frac{1}{2} \frac{\left|E_{1}\right|^{2}}{Z_{1}} \cos ^{2}\left(\beta_{1 \mathrm{x}} x\right) \tag{31}
\end{equation*}
$$

Note that P_{1} is strongest near the PEC $(x=0)$. The surface current on the PEC is $\mathbf{J}_{s}=\hat{a}_{x} \times \mathbf{H}$ or

$$
\begin{equation*}
\mathbf{J}_{s}=\hat{a}_{z} \frac{E_{1}}{Z_{1}} e^{-j \beta_{z} z} \tag{32}
\end{equation*}
$$

The field outside the dielectric is

$$
\begin{align*}
& E_{x}=A_{0} \frac{\alpha_{0 \mathrm{x}} \beta_{z}}{\omega \mu_{0} \epsilon_{0}} e^{-\alpha_{0 x} x} e^{-j \beta_{z} z} \\
& E_{z}=j A_{0} \frac{\alpha_{0 \mathrm{x}}^{2}}{\omega \mu_{0} \epsilon_{0}} e^{-\alpha_{0 x} x} e^{-j \beta_{z} z} \tag{33}\\
& H_{y}=A_{0} \frac{\alpha_{0 \mathrm{x}}}{\mu_{0}} e^{-\alpha_{0 x} x} e^{-j \beta_{z} z}
\end{align*}
$$

Calling

$$
\begin{equation*}
E_{0}=A_{0} \frac{\alpha_{0 \mathrm{x}} \beta_{z}}{\omega \mu_{0} \epsilon_{0}} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{0}=\frac{\beta_{z}}{\omega \epsilon_{0}} \tag{35}
\end{equation*}
$$

we have

$$
\begin{align*}
& E_{x}=E_{0} e^{-\alpha_{0 x} x} e^{-j \beta_{z} z} \\
& E_{z}=j E_{0} \frac{\alpha_{0 \mathrm{x}}}{\beta_{z}} e^{-\alpha_{0 x} x} e^{-j \beta_{z} z} \tag{36}\\
& H_{y}=\frac{E_{0}}{Z_{0}} e^{-\alpha_{0 x} x} e^{-j \beta_{z} z}
\end{align*}
$$

The Poynting vector is

$$
\begin{equation*}
\mathbf{P}_{1}=\hat{a}_{z} \frac{1}{2} \frac{\left|E_{0}\right|^{2}}{Z_{0}} e^{-2 \alpha_{0 x} x} \tag{37}
\end{equation*}
$$

This decays exponentially in x so the energy is localized near the dielectric.

Microstrip

Closely related to the problem we have just considered is the so-called microstrip transmission line. This is illustrated below. Microstrip is ubiquitous in RF circuits. At low frequencies it can be treated like a standard PC circuit board structure with a ground plane backing. At high frequencies, however, it must be treated as a waveguide.
The microstrip waveguide is identical to the dielectric-covered ground plane with the addition of a conducting strip of width w placed on top of the dielectric. This additional PEC modifies the boundary conditions to require $E_{y}=E_{z}=0$ for $x=h$ and $|y|<w / 2$. A rigorous solution to the microstrip
problem is a substantial undertaking. One approach is to extend our analysis to include y dependence in the groundplane modes (both TE and TM) and express the microstrip field as a superposition of the ground-plane modes such that the additional PEC boundary condition is met.

In the homework we considered a rectangular dielectric waveguide covered with PEC on the top and bottom. This can be taken as a simplistic model for microstrip.

Figure 3: Microstrip transmission line geometry.

References

1. Gowar, J., Optical Communication Systems, $2^{\text {nd }}$ Ed., Prentice Hall, 1993, ISBN 0-13-638727-6.
