Lecture 3i

Dielectric-Covered Ground Plane

Introduction

For wave guiding structures with PEC (or PMC) surfaces the
Poynting vector is non-zero only inside the waveguide cross
section (for example, 0<x<a,0<y<b). When
waveguides are made with dielectric materials the field can
extend outside of the guide, in principle all the way to infinity.

In this lecture we will consider the dielectric-covered ground
plane waveguide. This structure combines both PEC and
dielectric surfaces, as shown in the following figure.
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Figure 1:Geometry of the dielectric-covered ground
plane problem.

The plane x=0 is a PEC surface (the “ground plane”). This
has a dielectric coating of thickness 4. The permeability and
permittivity of the dielectric are p, e . The region x >4 is air
(essentially free space) with parameters p, €, . The boundary
conditions are

E,=E.=0atx=0
E,,E. H,  H,continuousat x =h

(M

The subtlety is that the field will be propagating in two
different media. While there is a field in the region x>#, if
this structure is to act as a waveguide the field power density
must in some sense be “concentrated” near the dielectric.
Consequently we should seek solutions for which the field
decays as x—oo .

TM” modes

We will investigate TM* modes that propagate in the z
direction. Since the boundary conditions at x =4 must hold
for all y,z, the y and z dependence of the fields must be the
same for both the 0<x </ and x>/ regions. We will treat
the relatively simple case in which there is no y dependence,
and the z dependence of the fields has the form ¢ /%< . For
this case the non-zero field components are
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In the region 0<x </ we can take

AZZAl[COS(BI"x)]ejBIZ 3)

sin(B,,x)

where B7 +B2=w’pe . Since we require E,=0 at x=0
we need to use the sin(B,,x) factor for A.. In the region
x>h we can take

—JjBoxx .
AZ:AO[e o ]efﬁsz )
e 0x

where Bi +BZ=w’p,€, . To get wave guiding, we want this
field to decay as x— oo . If B,,=—j &, then ¢ /Prr=c o
and —og +B=w’p,€,. Therefore, our solution has the
form

4= Alsingﬁlixz?;jﬁ:z 0<x<h )
Aye et xX>h
with
wzuo Eosz_O‘OX (6)

oozu €=B§+B?x

Subtracting the first of these equations from the second gives
us the following relation between B, X,

B?xdl—(xgx:wz(ue_uOEO) (7)

We now need to enforce continuity of

E=—1-0 4
u)lueaé‘x (8)
H=——=
4 mox

at x=h . Applied to expression (5) this gives us the following
two equations
1 1

_(_B?X)Al Sin( leh):—(xéxAO e_(xﬂx
we Mo

h

1 1 —ot ©)
—B, A, cos(B, h)=—(—x,)A,e ™"
H Ho

At this point we would like to solve for B,,,x, (We can

worry about A, 4, later). Dividing the first equation by the
second gives us the single equation
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—letan(leh)=—(x0X
€ €

(10)

Together with (7) this gives us two equations in the two
unknowns B, , &, . A change to dimensionless variables is

convenient. Let u=8,,4, w=x, /s and €,=e/e,. Then
the previous equation reads
w:iutan(u) (11)
Multiplying (7) by A* we have
B2 W +og WP=w’h’(pe—p,¢,) (12)
This becomes
wHwi=r? (13)
where
V=whue—pye, (14)

is called the normalized frequency. It is dimensionless and
proportional to the frequency. Our two equations can therefore
be written

wzeirutan(u) (15)

w=\V'—u’

These are represented graphically in the following figure.
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Figure 2: Graphical solution of equations (15) for TM*
modes. Vertical axis is “w” while horizontal axis is

u”. In the case plotted V=5 and €,=2. Each

intersection gives a solution and corresponds to a
particular mode.
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The equation w=- Vi —u? represents a circle of radius V.
Since wutanu goes from 0 to infinity as u ranges over
knm<u<(k+1/2)m  for
w=(1/€,)utan(u) produces a series of curves starting at
u=kt,w=0 and extending to wu=(k+1/2)w,w=00.
Each intersection of one of these curves with the circle
w=~V2—u’ gives a solution of the system (15). This gives

integer k&, the equation

particular »,w values which in turn give particular B, &,
values. From there B, can be obtained. Finally, 4, or A4,
can be arbitrarily specified and the other solved for using (9).

As frequency decreases, V decreases and the circle
W:\/Vz—u2 shrinks. If V<km there will be no
intersection between the circle and the curve passing through
u=km,w=0, and that mode will not propagate (it will be
below cutoff). The mode cutoff frequencies are therefore

given by wh+Jue —p,€e,=k T or
k

fk_zhv HE—H(E

(16)
for k=0,1,2,....

Dominant mode

For f<1/(2h\pe—p,e,),
exists, the TM; mode. This mode has no cutoff frequency
(that is, the “cutoff frequency” is zero). An analysis of the
TE® modes shows that the lowest TE® cutoff frequency is
V=m/2 or f=1/4h\pe—p,¢,) . Therefore, if V</2
or f<1/(4h\ue—p,¢,) the waveguide has single-mode

or V<1, only one TM” mode

operation in the dominant TM{ mode.

Suppose we have specific values for e, and 4. Let's trace
through the steps required to calculate dominant mode fields.
First, given the frequency w , we calculate the normalized
frequency

V=whype—p,¢, 17)
Second, solve (15) graphically, or solve
el—u tan(u)=\/V2—u2 (18)

r

for u. This equation does not have a closed-form solution.
However, if u is small enough that tanu~u is valid, then it

reduces to u’=e,\ V’—u’, or
uttelu’—(e, V) =0 (19)

which is a quadratic in #° and can be solved analytically to
give

1/2
u= J_(\ll—ir (2V/e,) - ) (20)
In any case your u value fixes
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le_ h (21)

Third, w=1p’—4u> fixes

=,

= 22
(XOX h ( )

Fourth, solve for B, using
B.=Vw ne—B;, (23)

Fifth, chose a value for either A, or A, and use one of
equations (9) to solve for the other. For instance, multiplying
the second of these by p 4 gives

Ayucosu=—A,pu, we " (24)

You now have the complete solution

A= Alsingﬁlixzeg‘jﬁiz 0<x<h 25)
Aoe ot o Jb:z x>h
Sixth, and finally, use
. 2
E=——L 9
’ WHEIXDz
j @
E = — (26)
WHE DX
H =10
Y puox °

to calculate the field components. The field inside the
dielectric is

Ex:—A]—le Zcos(B, x)e 7
He
. B?x . —JjB.z
E.=—jA4, sin(B,, x)e '™ 27
WHE

H =—A4, Bix cos (B, .x)e /**
i

y

Or, calling

3i.3

The Poynting vector is

2
1 ﬂcosz( B x)

31
2 Z, @D

P,=a

Note that P, is strongest near the PEC ( x =0 ). The surface
current on the PECis J,=a,XH or

E. .
J — % 1 JB.z
s—a 2 e (32)
The field outside the dielectric is
& — QX — jB.z
Ex:AO OXBZ e Mo JB.
WU, €,
2
EZ:j AO 0(0x e—u(,\x e—jﬁzz (33)
WH,€E,
X —XX —JjB.z
Hv:Aoﬁe o g JB.
) ™
Calling
O(OXBA
E,=4 4
v (34)
and
B.
Z,= 35
el (35)
we have
Ex:EOe*(Xn\X e*]-B:Z
. (XOX —xg X —jB.z
E — E e 0x e Jb.
:=J Ly B. (36)
EO —®uX —jB.z
H},=Z—Oe e’
The Poynting vector is
P =i %|Z—°| 200 (37)
0

This decays exponentially in x so the energy is localized near
the dielectric.

E1=—A1—B“B€Z (28)
w . .
. Microstrip
and Closely related to the problem we have just considered is the
_ B, so-called microstrip transmission line. This is illustrated
Z,= we 29 below. Microstrip is ubiquitous in RF circuits. At low
frequencies it can be treated like a standard PC circuit board
we have structure with a ground plane backing. At high frequencies,
E.=E, cos(p, x)e however, it must be treated as a waveguide.
B e The microstrip waveguide is identical to the dielectric-covered
E.=j E sin(Bx)e ™ ground plane with the addition of a conducting strip of width
B. (30) : . ) "
z w placed on top of the dielectric. This additional PEC
Hy:Z_] cos (B, x )e’fﬁrz modifies the boundary conditions to require E,=E_ =0 for
: x=h and |y|<w/2 . A rigorous solution to the microstrip
EE518: Advanced Electromagnetic Theory Scott Hudson 2015-03-09
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problem is a substantial undertaking. One approach is to
extend our analysis to include y dependence in the ground-
plane modes (both TE and TM) and express the microstrip
field as a superposition of the ground-plane modes such that
the additional PEC boundary condition is met.

In the homework we considered a rectangular dielectric
waveguide covered with PEC on the top and bottom. This can
be taken as a simplistic model for microstrip.
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Figure 3: Microstrip transmission line geometry.

References

1. Gowar, J., Optical Communication Systems, 2™ Ed.,
Prentice Hall, 1993, ISBN 0-13-638727-6.

EE518: Advanced Electromagnetic Theory Scott Hudson 2015-03-09



	Introduction
	TMz modes
	Dominant mode
	Microstrip
	References

