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Lecture 3i

Dielectric-Covered Ground Plane

Introduction

For wave guiding structures with PEC (or PMC) surfaces the
Poynting vector is non-zero only inside the waveguide cross
section  (for  example,  0≤x ≤a ,0≤ y ≤b ).  When
waveguides  are  made with dielectric  materials the field can
extend outside of the guide, in principle all the way to infinity.

In this lecture we will consider the dielectric-covered ground
plane waveguide.  This  structure  combines  both  PEC  and
dielectric surfaces, as shown in the following figure.

Figure  1:Geometry  of  the  dielectric-covered  ground
plane problem.

The plane x =0  is a PEC surface (the “ground plane”). This
has a dielectric coating of thickness  h. The permeability and
permittivity of the dielectric are  , . The region x h  is air

(essentially free space) with parameters 0,  0 . The boundary
conditions are

E y= E z=0  at x =0
E y , E z , H y , H z continuous at x =h

(1)

The  subtlety  is  that  the  field  will  be  propagating  in  two
different media. While there is a field in the region x h , if
this structure is to act as a waveguide the field power density
must  in  some  sense  be  “concentrated”  near  the  dielectric.
Consequently we  should  seek  solutions  for  which  the  field
decays as x ∞ .

TMz modes

We  will  investigate  TMz modes  that  propagate  in  the  z
direction. Since the boundary conditions at  x =h  must hold
for all y , z , the y and z dependence of the fields must be the
same for both the 0≤x ≤h  and x h  regions. We will treat
the relatively simple case in which there is no y dependence,
and the  z dependence of the fields has the form  e− j  z z . For
this case the non-zero field components are
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In the region 0≤x ≤h  we can take

A z= A1{cos  1x x 

sin   1x x }e− j  z z
(3)

where  1x
2 z

2 =2   .  Since we require  E z=0  at  x =0
we need to use the  sin  1x x   factor for  A z . In the region

x h  we can take 

A z= A0{e− j  0x x

e j 0x x }e− j z z (4)

where 0x
2  z

2=2 0 0 . To get wave guiding, we want this

field to decay as x ∞ . If 0x=− j 0x  then e− j  0x x=e− 0x x

and  −0x
2  z

2=2 0 0 .  Therefore,  our  solution  has  the
form

Az={A1 sin   1x x e− j z z 0 ≤x ≤h

A0 e− 0x x e− j z z x h
(5)

with


2
0 0=z

2
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2  1x

2 (6)

Subtracting the first of these equations from the second gives
us the following relation between 1x ,0x
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2
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  −0 0  (7)

We now need to enforce continuity of 
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at x =h . Applied to expression (5) this gives us the following
two equations
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 

− 1x
2
A1 sin  1x h =

1
0 0

0x
2 A0 e

−
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1


 1x A1 cos 1x h =
1
0

−0x A0 e−0x h
(9)

At this  point  we would  like to solve  for  1x ,0x  (we can

worry about A0 , A1  later). Dividing the first equation by the
second gives us the single equation
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1


1x tan  1x h=
1
0

0x (10)

Together  with  (7)  this  gives  us  two  equations  in  the  two
unknowns  1x ,0x .  A change to dimensionless variables  is

convenient.  Let  u=1x h ,  w=0x h  and  r =/ 0 .  Then
the previous equation reads 

w=
1
r

u tan u (11)

Multiplying (7) by h2  we have

1x
2 h20x

2 h2=2 h2 −0 0 (12)

This becomes

u2w2=V 2 (13)

where

V=h  − 00 (14)

is  called  the  normalized  frequency.  It  is  dimensionless  and
proportional to the frequency. Our two equations can therefore
be written

w=
1
r

u tan u 

w=V 2
−u2

(15)

These are represented graphically in the following figure.

Figure 2: Graphical solution of equations (15) for TMz

modes.  Vertical  axis  is  “w” while  horizontal  axis  is
“u”.  In  the  case  plotted  V=5  and  r = 2 .  Each
intersection  gives  a  solution  and  corresponds  to  a
particular mode.

The  equation  w=V 2
−u 2  represents  a  circle  of  radius  V.

Since  u tan u  goes  from  0  to  infinity  as  u ranges  over

k ≤u≤ k 1/ 2   for  integer  k,  the  equation

w=1/r u tan u   produces  a  series  of  curves  starting  at

u=k  ,w=0  and  extending  to  u= k 1 / 2  , w=∞ .
Each  intersection  of  one  of  these  curves  with  the  circle
w=V 2−u2  gives a solution of the system (15). This gives

particular  u,w values  which in turn give particular  1x ,0x

values. From there  z  can be obtained. Finally,  A1  or  A0

can be arbitrarily specified and the other solved for using (9). 

As  frequency  decreases,  V decreases  and  the  circle
w=V 2

−u 2  shrinks.  If  Vk   there  will  be  no
intersection between the circle and the curve passing through
u=k  ,w=0 , and that mode will not propagate (it will be

below  cutoff).  The  mode  cutoff  frequencies  are  therefore
given by h −0 0=k   or

f k=
k

2 h  − 0 0

(16)

for k =0,1,2, . 

Dominant mode

For  f 1 /2 h  −0 0 , or  V , only one TMz mode

exists, the  TM0
z  mode. This mode has no cutoff frequency

(that  is,  the “cutoff  frequency”  is  zero).  An analysis  of  the
TE z  modes shows that the lowest  TE z  cutoff frequency is

V= / 2  or f =1 /4 h  −0 0 . Therefore, if V / 2

or  f 1 /4 h  −0 0  the  waveguide  has  single-mode

operation in the dominant TM0
z  mode. 

Suppose we have specific values for   ,  and  h. Let's trace
through the steps required to calculate dominant mode fields.
First,  given  the frequency   ,  we calculate  the normalized
frequency

V= h −0 0 (17)

Second, solve (15) graphically, or solve

1
r

u tanu =V 2
−u 2

(18)

for  u.  This  equation  does  not  have  a  closed-form solution.
However, if u is small enough that tan u≈u  is valid, then it

reduces to u2
=r V 2

−u 2 , or

u4
 r

2 u 2
−r V 

2
=0 (19)

which is a quadratic in u2  and can be solved analytically to
give

u=
r

2
12V/r 

2
−1 

1 /2

(20)

In any case your u value fixes
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1x=
u
h

(21)

Third, w=V 2
−u 2  fixes

0x=
V 2

−u 2

h
(22)

Fourth, solve for z  using 

 z= 
2
 −1x

2 (23)

Fifth,  chose  a value  for  either  A0  or  A1  and  use  one  of
equations (9) to solve for the other. For instance, multiplying
the second of these by  h  gives

A1 u cos u=−A0 r w e−w (24)

You now have the complete solution

Az={A1 sin   1x x e− j z z 0 ≤x ≤h

A0 e− 0x x e− j z z x h
(25)

Sixth, and finally, use

 E x=−
j

 

∂
2

∂ x∂ z
Az

 E z=
j

 

∂2

∂ x2
Az

H y=−
1


∂
∂ x

Az

(26)

to  calculate  the  field  components.  The  field  inside  the
dielectric is

 E x=−A1

 1x z

 
cos   1x x  e− j z z

 E z=− j A1

1x
2

 
sin  1x x e− j  z z

H y=−A1

1x


cos   1x x e− j z z

(27)

Or, calling 

E 1=−A1

1x z


(28)

and

Z 1=
z


(29)

we have

 E x= E 1 cos  1x x e− j  z z

 E z= j
 1x

 z

E 1sin  1x x e− j  z z

H y=
E 1

Z 1

cos  1x x e− j z z

(30)

The Poynting vector is

P1=a z
1
2
∣E1∣

2

Z 1

cos2
 1x x (31)

Note that P1  is strongest near the PEC ( x =0 ). The surface

current on the PEC is J s= ax ×H  or

J s= az

E 1

Z 1

e− j z z
(32)

The field outside the dielectric is 

 E x= A0

0x z

0 0

e−0x x e− j z z

 E z= j A0

0x
2

0 0

e− 0x x e− j z z

H y=A0

0x

0

e− 0x x e− j z z
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Calling

E 0=A 0

0x z

0 0

(34)

and

Z 0=
z

 0

(35)

we have

 E x= E 0 e− 0x x e− j z z

 E z= j E 0

0x

z

e− 0x x e− j z z

H y=
E 0

Z 0

e−0x x e− j  z z

(36)

The Poynting vector is

P1=a z
1
2
∣E 0∣

2

Z 0

e−2 0x x (37)

This decays exponentially in x so the energy is localized near
the dielectric. 

Microstrip

Closely related to the problem we have just considered is the
so-called  microstrip transmission  line.  This  is  illustrated
below.  Microstrip  is  ubiquitous  in  RF  circuits.  At  low
frequencies it can be treated like a standard PC circuit board
structure with a ground plane backing.  At high frequencies,
however, it must be treated as a waveguide. 

The microstrip waveguide is identical to the dielectric-covered
ground plane with the addition of a conducting strip of width
w placed  on  top  of  the  dielectric.  This  additional  PEC
modifies the boundary conditions to require  E y=E z=0  for

x=h  and  ∣y∣w /2 .  A rigorous  solution  to  the  microstrip
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problem  is  a  substantial  undertaking.  One  approach  is  to
extend our analysis  to include  y  dependence in the ground-
plane  modes (both  TE and TM) and express  the microstrip
field as a superposition of the ground-plane modes such that
the additional PEC boundary condition is met.

In  the  homework  we  considered  a  rectangular  dielectric
waveguide covered with PEC on the top and bottom. This can
be taken as a simplistic model for microstrip. 

Figure 3: Microstrip transmission line geometry. 
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