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Lecture 3e

Rectangular waveguide

Introduction

So far  in  rectangular  coordinates  we have  dealt  with plane
waves propagating in simple and inhomogeneous media. The
power  density  of  a  plane  wave   extends  over  all  space.
Therefore an ideal plane wave would carry infinite power and
as such is not physically realizable. In many applications we
need to contain the power of an electromagnetic wave within
some  specific  volume.  We  can  accomplish  this  using  a
waveguide. Examples of waveguides are coaxial cables, fiber-
optics,  and  TV  antenna  wires.  As  we  will  see,  when  one
confines a wave the possible solutions form a discrete set of
modes.  Each  mode  typically  has  a  cutoff  frequency below
which  the  mode  cannot  propagate,  and  the  propagation
constant typically has a non-linear dependence on frequency
that leads to the phenomenon of waveguide dispersion. 

Rectangular waveguide

In this lecture we will consider rectangular waveguides which
guide waves along the z axis while confining their power to a
rectangle  of  dimensions  a by  b.  This  is  illustrated  in  the
following figure.

Figure 1: Rectangular waveguide. The guide extends
to ±∞  along the z axis. We take a≥b . 

The interior  of  the waveguide is  0≤x≤ a ,  0≤ y≤b  and

−∞≤z≤∞ .  The  waveguide  surface  is  typically  metallic
(ideally PEC),  and the interior  is  typically air-filled (ideally
free  space).  However,  we  could  have  PMC  or  dielectric
versions  of  the  same  geometry,  and  the  interior  could,  in
principle, be filled with an arbitrary material. 

For  a  PEC  waveguide,  the  boundary  conditions  –  that  the
tangential electric fields are zero – becomes

E y= E z=0 x=0, a
E x= E z=0 y=0, b

(1)

As we have seen previously, any field can be represented using
just  the  z components  of  the  magnetic  and  electric  vector

potentials –  A z , F z . We will begin with the case of a field

described  by  F z  alone.  This  field  will  have  no  E z

component, so we will call it a TE z  mode (the electric field is
transverse to the z direction). 

TEz Modes

Using our  separation  of  variables  results  for  the  Helmholtz
equation in rectangular coordinates, we look for solutions of
the form

F z={cos  x x
sin x x}{cos   y y

sin   y y}e− j 
z
z

(2)

We use the e− j z z  factor because we are interested in waves
propagating along the  z axis.  As before,  the  brace  notation
refers to an arbitrary linear combination of the enclosed terms.
Let's  consider  the  boundary condition  E y=0  at  x=0, a .
We have

E y=
1

∂
∂ x

F z∝ x{−sin  x x
  cos  x x} (3)

Since we are  enforcing the boundary conditions at  different
values of x, we need only consider that factor of F z  that has x

dependence. To get  E y=0  at  x=0  we must use only the

sin   x x   dependence in E y , or we must have  x=0 . The

condition E y=0  at x=a  requires  x=0  or

sin x a =0 (4)

This last condition gives

 x=m


a
(5)

where  m is  an  integer: m=0,1,2, .  Since  m=0  gives

 x=0  we can simply say that the x dependence of E y  must

be through a factor sin   x x   where x  is one of the values

given  by (5).  Therefore  the  x dependence  of  F z  must  be

through a factor of cos x x  . Note that if m=0 , so  x=0 ,

then E y≡0  everywhere. 

Now consider the boundary conditions  E x=0  at  y=0, b .
We have

E x=−
1

∂
∂ y

F z∝ y{−sin  y y
  cos   y y} (6)

This is analogous to the E y  case, so we must have that F z

depends on y through a factor of cos  y y   with

 y=n


b
(7)

and n=0,1,2, . If n=0  then E x≡0  everywhere. We see
that the case m=n=0  is trivial because we would then have
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E x≡ E y≡0  and there would be no field anywhere.

We have found that  solutions exist  only for  certain discrete
values of x , y  and have the form

F z=F0 cosm x /a cosn x /b e− j  z z (8)

We refer to this as the TEmn
z  mode. The value of z  is fixed

by x
2
 y

2
 z

2
=

2
  , or

 z=2−m/a 2− n/ b2 (9)

Using Equation (24) of Lecture 2c, the electric field is

E x=  
F0


 y cos  x xsin  y ye

− j
z

z

E y=−
F0


x sin x xcos  y ye− j z z

E z=0

(10)

and the magnetic field is 

H x=−
E y

Z

H y=  
E x

Z

H z=− j
F 0


  x

2
 y

2
 cos  x x cos   y y e− j z z

(11)

where the wave impedance is 

Z=


 z

(12)

Dominant mode

As we will see, the most important, or  dominant mode is the
so-called  TE10

z  mode  with  m=1, n=0 .  In  this  case

x= / a ,  y=0  and

 z=2− /a 2 (13)

The non-zero field components are

E y=−
 F 0

a 
sin  x x e− j  z z

H x=  
 z F 0

a
sin   x x e− j z z

H z=− j
2 F 0

a2


cos   x x  e− j z z

(14)

It is convenient to call E0=− F0 / a  . Then

E y=    E0 sin  x /a e− j  z z

H x=−
E0

Z
sin  x /a e

− j 
z
z

H z= j
 E0

 a
cos  x /a e− j  z z

(15)

with

 z=2 − /a 2 (16)

and

Z=


 z

(17)

Power flow

The Poynting vector is

P=
1
2

Re E×H∗


=
1
2

Re [ a z E x H y
∗
− E y H x

∗


           ax E y H z
∗
− a y E x H z

∗ ]

(18)

If the material filling the waveguide is lossless so that   ,
are real, then the ax , a y  terms are purely imaginary due to the

j factor in H z . In this case

P=
1
2
a z∣E x∣

2
∣E y∣

2
Re[ 1

Z∗] (19)

If z  is real then Z is real and

P= az

z∣F 0∣
2

2 2 [ y
2 cos2 x xsin2 y y

                        x
2 sin 2

 x xcos2
  y y]

(20)

If  z=− j  z  is  imaginary  then  P=0 .  for  the  TE10
z

(assuming z  is real)

P=
∣E0∣

2

2 Z
sin2
 x/a  (21)

The total power carried in the waveguide is

W=∫
0

b

∫
0

a

P z dx dy (22)

For the TE10
z  mode

W=
∣E0∣

2

4 Z
ab (23)

Cutoff

From the condition

 z=2 −m/a 2−n/ b2 (24)

we see that for real   , , if    falls below a certain value

then  z  will become imaginary, and the field will no longer
propagate  along  the  z axis.  Instead  it  will  decay  as  e−z z

where z=− j  z . This is consistent with our result above that

z=− j  z  gives  P=0 . This frequency is called the  cutoff
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frequency.  The  mode  propagates  only  above  the  cutoff
frequency. The cutoff frequency (in Hz) is

f c=
1

2 
m/a 2n /b2 (25)

Different modes (m,n values) have different cutoff frequencies.
The lowest cutoff frequency for a TEmn

z  mode will correspond
to m=1, n=0  (since a≥b ). This gives

f c=
1

2 a 
(26)

This is the cutoff frequency of the  TE10
z  mode. The second

lowest cutoff will be for the TE01
z  mode and is 

f c=
1

2 b 
(27)

Over the frequency range 

1

2a  
 f 

1

2b 
(28)

only the  TE10
z  mode  is  above  cutoff,  and  we say that  the

waveguide  has  single-mode  operation.  For  this  reason  the
TE10

z  mode is sometimes called the  dominant mode.  In  the

next lecture we will consider TMmn
z  modes using the magnetic

vector  potential,  and  we  will  see  that  the  TE10
z  cutoff

frequency is lower than that of any TMmn
z  mode. Note that as

we approach cutoff  z0  so Z∞ . 

Most general TEz field

We have found some particular solutions in the separation of
variables form. What does this tell us about an arbitrary TE z

field  in  the  waveguide  described  by  some  function
F z x , y , z ?  Consider  the  two-dimensional  function

F z x , y , 0  .  For  any  value  of  y we  can  represent  the  x
dependence of this over 0x a  by a cosine series

F z x , y , 0 =∑
m=0

∞

F m y cos m x / a  (29)

where

F0 y=
1
a
∫
0

a

F z x , y ,0dx (30)

while for m≥1

Fm  y=
2
a
∫
0

a

F z  x , y ,0 cos m x /a dx (31)

Likewise,  the  coefficients   F m y   can  be  expanded  in  a
cosine series over 0 yb :

F m y =∑
n=0

∞

F mn cos n y /b  (32)

Substituting this into the previous expression we arrive at

   F z x , y , 0 =∑
m=0

∞

∑
n=0

∞

F mn cos m x / a cos n y /b  (33)

This is nothing more than a linear combination of our  TEmn
z

modes at z=0 . For other values of z we will have

F z x , y , z=

         ∑
m=0

∞

∑
n=0

∞

F mn cos m x / a  cos n y /b  e− j  z z (34)

Therefore, any TE z  field that can exist inside the waveguide
can be represented by a superposition of the TEmn

z  modes, so
we don't need to look for additional solutions.

If  we  operate  at  a  frequency  that  gives  us  single-mode
operation, then regardless of the field we start with at  z=0
we will quickly end up with only the TE10

z  mode since it is the
only mode that can propagate. All other mode components will
decay exponentially along the waveguide. 

Ohmic Losses

Our solutions derived above have assumed a PEC waveguide
surface. If the surface is a “good conductor” but not perfect,
then  we  can  apply  the  surface  resistance  idea  to  calculate
ohmic losses. The surface current amplitude on a PEC is equal
to the tangential magnetic field, and the power dissipated over
a surface is

W diss=
1
2

R s∬∣H tan∣
2 dS (35)

where

R s=  0

2 ' '
= 0

2
(36)

For the dominant  TE10
z  mode the fields are  given by (15).

Consider a section of the waveguide extending  z  along the

z axis. On the surfaces x=0, a  only H z  is tangential. Since

cos2 0=cos2=1 , the power dissipated on these two surfaces
is

2
1
2

R s z


2∣E0∣
2

 a 2
∫
0

b

dy=R s b z


2∣E0∣
2

 a2
(37)

On the surfaces y=0, b  both H x , H z  are tangential and

    ∣H tan∣
2
=∣E0∣

2[ 1

Z 2 sin2
 x /a 


2

 a 2
cos2

 x / a] (38)

We integrate this over x from 0 to a. Since

∫
0

a

sin2
 x / adx=∫

0

a

cos2
 x /a dx=

a
2

(39)

we obtain
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2
1
2

R s a z
∣E0∣

2

2 [ 1

Z 2


2

 a2 ] (40)

Putting the contributions of all four walls together we arrive at

d W diss

dz
=

a Rs

2Z 2∣E 0∣
2[1 

2 Z 2

 a 2 1
2b
a ] (41)

This is the power lost per unit length for the dominant TE10
z

mode. 

Waveguide dispersion

The  dependence  of   z  on  frequency  has  important
implications.  Suppose  we excite  a  waveguide  mode  with  a
temporal pulse. For example, consider a Gaussian pulse with
width   and center frequency 0

ai t =a0 e
−

1
2
 t /2

e j0 t (42)

The Fourier representation of this

ai t =∫
−∞

∞

A i  e
j t d 

2
(43)

has the spectrum

Ai =a 0  2  e
−

1
2


2
 −0

2

(44)

We see that  the spectral  width is  1/  which is the classic
result  that  a  narrow  pulse  implies  a  large  bandwidth  and
conversely.

Let's investigate what happens when this pulse travels down a
waveguide of length L. A field component with frequency 
will  experience  a  phase  change  of   exp− j  z L  .
Therefore, the output pulse will be

aot =∫
−∞

∞

Ai  e
− j  z   L e j t d 

2
(45)

Let's expand  z  around the center frequency

 z = z 0 z 1−0 
1
2
 z2−0

2
⋯ (46)

with

 z0= z0

 z1=
d

d 
 z0

 z2=
d 2

d 2
 z 0 

(47)

We need to evaluate

aot =e
− j  z 0 L

a 02 

   ∫
−∞

∞

e
−

1
2


2
 −0

2

e− j  z1  − 0 L e
− j 1

2
 z 2 −0 

2 L

e j t d 
2

(48)

Calling u=−0  this becomes

aot =e− j  z 0 L a 0



 2
e j 0t

            ∫
−∞

∞

e
−

1
2
2 u2

e− j  z 1 L u e
− j

1
2
 z 2 L u 2

e j u t du

(49)

The integral is

∫
−∞

∞

e
−

1
2
 

2
− j  z2 L u2

e ju t− z1 L du (50)

Note that the time variable  t has been shifted by an amount
z1 L . This tells us that ug=1/ z1  is the velocity with which

the pulse travels along the waveguide. This is often called the
group velocity. In addition, the pulse will be broadened. Using

∫
−∞

∞

e
−

1
2

k2u2

e j u t du= 2
k

e
−

1
2

t2

k2

(51)

where k 2=2− j  z2 L  and

1
2− j  z2 L

=


2
 j  z2 L

4 z2 L 2

                   = 1
2 z2 L/ 2


j  z2 L

4 z2 L 2

(52)

we find that the amplitude of the output pulse varies as 

∣a ot ∣∝e
−

1
2

 t− z1 L2


2
  z2 L/ 2 (53)

The width goes from   to 

o=2
 z2 L/ 2 (54)

This is the phenomenon of  waveguide dispersion in which a
pulse widens as it travels down the waveguide. The narrower
the original pulse (the small the value of   ) the greater the

dispersion.  Minimizing   o
2= 2 z2 L / 2  with respect  to

  we find

 o ,min= 2∣ z2∣L (55)

for  the  minimum  possible  output  pulse  width.  This
corresponds to an input pulse width =∣ z2∣L . We see that

the 2nd derivative (or the curvature) of the curve z   limits
the pulse widths that can be sent down the waveguide. 

Note  that  for  a  plane  wave  in  a  simple  medium  with
 z=   ,  the  2nd derivative  of  z   is  zero,  so

dispersion does not occur. However, if =  then the 2nd

derivative  of  z   will  be  non-zero  and  dispersion  will
occur. This is called  material dispersion since it arises from
the properties of the material rather than from the geometry of
a waveguide. In fiber-optics, where dielectric waveguides are
employed,  one  typically  has  both  material  and  waveguide
dispersion to contend with.
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TMz modes

In  the  previous  lecture  we solved  for  the  TEz modes  in  a
rectangular  waveguide.  We  now  consider  TMz modes  for
which the magnetic vector potential has the form

Az={cos  x x
sin  x x}{cos  y y

sin  y y}e− j 
z
z

(56)

The boundary conditions for a PEC waveguide are as before

E y= E z=0 x=0, a
E x= E z=0 y=0, b

(57)

The electric field is given by (see Lecture 2c)

E x=−
j


∂
∂ x

∂
∂ z
Az

E y=−
j

 
∂
∂ y

∂
∂ z
Az

E z=
j

 [ ∂
2

∂ x2
Az

∂
2

∂ y2
A z]

(58)

Since  E x  must vanish at  y=0  and it does not involve a  y

derivative of A z , we must use the sin   y y   term in our A z

solution. Likewise, E y  must vanish at x=0  and it does not

involve an x derivative of Az , so we must use the sin   x x 
term. Our solution will therefore have the form

Az=A0 sin  x x sin   y y  e− j z z (59)

The vanishing of  E y  at  x=a  and the vanishing of  E x  at

y=b  require

x=m


a
, m=1,2,

 y=n


b
, n=1,2,

(60)

Note that neither m or  n can be zero since that would lead to
A z≡0  and there would be no field. The value of z  is fixed

by the requirement x
2
 y

2
 z

2
=

2
=   to be

 z=2−m/a 2− n/ b2 (61)

The cutoff frequency is therefore

f c=
1

2  
m /a 2n /b 2 (62)

The  lowest  cutoff  frequency is  for  the  TM11
z  mode.  Since

there is no TM10
z  mode we see that the TE10

z  mode is indeed

the dominant mode in the waveguide. The  TE01
z  and  TE20

z

cutoffs  will  also  be  lower  than  that  of  the  TM11
z  mode

(provided  ab ). Therefore, the waveguide has single-mode
operation over the frequency range

1

2a  
 f 

1

2a  
min 2 , a /b (63)

The upper limit is at least a factor of 2 times the lower limit.
We say that the waveguide operates single mode over at least
one “octave.” 

For the TMmn
z  mode the electric field is

E x=
−A0 z


 x cos  x xsin  y y e

− j 
z
z

E y=
−A0 z

 
 y sin  x xcos   y y e− j z z

E z=
− j A0


 x

2
 y

2
sin x xsin  y y e

− j 
z
z

(64)

and the magnetic field is 

H x=   
1

∂
∂ y

Az=
A0 y


sin x xcos  y y

H y=−
1

∂
∂ x

A z=
−A0 x


cos  x xsin  y y

H z=0

(65)

or

H x=−
E y

Z

H y=  
Ex

Z
H z=0

(66)

where the wave impedance is

Z=
 z


(67)

Rectangular Resonators

Consider the situation in the following illustration.

Figure 1: Rectangular resonator.

Here we've cut a length  c of the waveguide and capped both
ends  with  PEC plates.  We will  no  longer  be  able  to  have
power propagating only along the z axis. Instead, we will need
waves  propagating  in  both  the  z  and  −z  directions.
Together  these  should  form  a  “standing  wave”  (non-
propagating)  field  of  the  type  we  have  in  the  x and  y
dimensions. Let's consider TE z  modes. We take
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F z=cos   x x cos   y y  F 1 e− j z z F 2 e j z z (68)

This represents a superposition of waves traveling in the  the
z  and −z  directions with amplitudes F 1, F 2 . The electric

field  will have  E x=−1 /  ∂ F z/∂ y ,  E y=1 /  ∂ F z/∂ x
or

E x=  
1

 y cos  x xsin  y y[ F1 e

− j 
z

z
F2 e

j 
z

z]

E y=−
1

 x sin  x xcos   y y[ F1 e− j 

z
z
F2 e j 

z
z]

(69)

Both of these components are  tangential  at  z=0  and must
therefore  be  zero.  This  gives  the  condition  F 1 F 2=0 .
Therefore 

F 1 e− j z z F 2 e j z z= F 1 e− j  z z−e j z z = F 0 sin   zz  (70)

and

F z= F 0 cos   x x  cos   y y sin  z z  (71)

so

E x=  
F0


 y cos  x xsin  y ysin  z z

E y=−
F0


x sin  x xcos  y ysin  z z

(72)

Now, E x= E y=0  at z=c  requires sin   z c=0  or

z= p


c
(73)

where  p=1,2, .  Note  that  p=0  would  give  E≡0 .
Taken  together  with  the  conditions  on  TEmn

z  waveguide
modes we have

x=m


a
m=0,1,

 y=n


b
n=0,1,

z= p


c
p=1,2,

(74)

with the additional constant that both m and n cannot be zero.
Therefore


2 m/ a 2n /b 2 p /c 2 =2

  (75)

so that

f r=
1

2  
m /a 2n /b 2 p /c2 (76)

is  the  resonant  frequency of  the  TEmnp
z  mode.  The  lowest

resonant frequency will be that of the TE101
z  mode (provided

ab ). 

TMz modes

From  our  analysis  above  it's  clear  that  for  TMz resonator
modes the magnetic vector potential will have the form

Az=A0 sin  x xsin  y y{cos  z z
sin  z z} (77)

Since

E x=−
j


∂
∂ x

∂
∂ z
A z

E y=−
j

 
∂
∂ y

∂
∂ z
Az

(78)

we must use the  cos z z   factor  in our  A z  expression so

that  E x , E y  are proportional to  sin   z z  and hence vanish
at z=0 . We have

A z= A0 sin  x xsin   y y cos  z z  (79)

The boundary condition E x= E y=0  at z=c  requires

z= p


c
(80)

where  p=0,1, . Note that  p=0  is acceptable. Although
this gives E x= E y=0  everywhere, E z≠0  so there will still

be a field. The conditions for a TMmnp
z  resonator mode are

x=m


a
, m=1,2,

 y=n


b
, n=1,2,

z= p


c
, p=0,1,

(81)

and the resonant frequency is

f r=
1

2  
m /a 2n /b 2 p /c2 (82)

The  minimum resonant  frequency  will  be  for  the  TM110
z

mode.  If cb  then the TE101
z  frequency will be lower than

the  TM110
z  frequency. Otherwise the  TM110

z  frequency will
be the lowest.
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