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Lecture 3e
Oblique incidence and wave impedance

Introduction

We now wish to consider the case of an arbitrary plane wave
incident  on a  planar  interface  or,  more generally,  a  layered
medium. The results are similar to the normal incidence case
but some additional bookkeeping is required as the reflection
and transmission coefficients are polarization dependent. 

H polarization

Consider  a  planar  interface  at  z=0  between  two  simple
media with

μ ,ϵ={μ1, ϵ1 z<0
μ2, ϵ2 z≥0

(1)

In general case μ ,ϵ  may be either real (lossless) or complex
(lossy).

A  plane  wave  with  propagation  constants  βx ,β y ,βz  and
arbitrary  polarization  can  be  represented  using  just  the  z
components of the magnetic and electric vector potentials

A z=A0 e− j  x x e− j y y e− j z z

F z=F 0 e− j  x x e− j y y e− j z z (2)

If only Az  is used then the field has no H z  component and
H is parallel to the interface (the x-y plane). We will call this
the H polarization case. 

Since our field will have x and y dependence we will need to
make sure that the boundary conditions (tangential  E and  H
fields are continuous at the interface) hold at all x and y values.
Toward this end, consider an equation of the form

e− jβ ix x
+ρe− jβrx x

=τ e− jβtx x
(3)

For  this  to  hold  at  all  x,  we  must  have  βix=βrx=β tx  and
1+ρ=τ . To see that this is so, consider that if two functions

are equal then all their derivatives are equal. Therefore

ix
n e− j ix x

 rx
n e− j rx x

=  tx
n e− j  txx (4)

for all n≥0 . This can only be true if βix=βrx=β tx . It follows
that what the incident, the reflected and the transmitted fields
must have the same x and y dependence at the interface z=0 .
Therefore,  we  will  represent  the  incident,  reflected  and
transmitted fields by

Aiz=Ai 0e
− j β

x
x
e
− j β

y
y
e
− jβ

1 z
z

Arz=A r0 e− jβx x e− jβ y y e  jβ1 z z

Atz=A t0 e− jβx x e− jβ y y e− jβ2 z z

(5)

so  that  the  x and  y behavior  of  the  three  plane  waves  are
identical.  The  z propagation  constants  follow  from  the
requirement

x
2
 y

2
1z

2
=

2
1 1

x
2 y

22z
2 =22 2

(6)

We use  e j  1z z
 behavior for the reflected wave to correspond

to a wave propagating toward  z−∞ .  The constants  A i0

and  x , y
 are fixed by specifying the incident plane wave.

We now need to solve for Ar0 , A t0
.

The  tangential  (x and  y)  components  of  a  field  are  derived
from A z

 using

H x=   
1
μ
∂
∂ y

Az

H y=−
1
μ
∂
∂ x

Az

E x=−
j

ωμ ϵ
∂
∂ x

∂
∂ z

Az

E y=−
j

ωμϵ
∂
∂ y

∂
∂ z

Az

(7)

In  the  normal  incidence  case  we  saw  that  the  intrinsic
impedance  η=√μ/ϵ ,  which  is  the  ratio  of  the  electric  to
magnetic field amplitudes, was important. In the present case
we will need to consider the ratio of the electric to magnetic
tangential field components. For example

E x

H y

=

−
j

ωμϵ
∂
∂ x

∂
∂ z

Az

−
1
μ
∂
∂ x

Az

=
βz
ωϵ (8)

This leads us to define the wave impedance for H polarization

Z=
βz

ωϵ
(9)

Note  that  when  βz=β=ω√μϵ  then  Z=η .  In  general,
however,  Z depends on the permittivity, permeability and on
the direction of propagation of the plane wave. It is therefore
not  as  physically  fundamental  as  η ,  but  is  very  useful
mathematically. 

From (7) we see that if

1
μ1
(Ai 0+Ar0)=

1
μ2

At 0 (10)

at z=0  then H x , H y  will be continuous across the interface,
because in each case ∂/∂ x  or ∂ /∂ y  will introduce the same
constant − j βx  or − j βy  for both media. To get the E x , E y

components to be continuous, we require that

    
j

ωμ1ϵ1
(− j β1 z Ai 0+ jβ1 z A r0)=

j
ωμ 2ϵ2

(− j β2 z At 0) (11)

Solving for A t0
 in both of these equations and equating those

expressions gives us
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A t0=
2

1

 A i0 A r0

=
2

1

2

1

1z

2z

 A i0−A r0

(12)

We now have a single equation in  A i0 , A r0
. The  


 factors

cancel, and multiplying by /  we can write

A i0A r0=
Z 1

Z 2

 A i0− Ar0  (13)

The solution is 

Ar0=Ai0

Z 1−Z 2

Z 1+Z 2

(14)

The transmitted amplitude is

At0=Ai0

μ2
μ1

2 Z1

Z 1+Z 2

(15)

We will  define the reflection coefficient  as  the ratio  of  the
tangential components of the transmitted and incident electric
fields. We have

=
E rx

E ix

=
E ry

E iy

=−
A r0

A i0

(16)

The  minus  sign  comes  from  the  e− jβ1z z
 and  e jβ1z z

 z
dependences  of  the  incident  and  reflected  fields  and  the
∂ /∂ z  operation involved in obtaining  E x

 from  A z
.  The

transmission coefficient is likewise defined as

=
E tx

E ix

=
E ty

E iy

=
2z / 2 2

 1z/ 1 1

A t0

Ai0

=
1

2

Z 2

Z 1

At0

Ai0

(17)

From our solution for A r0 , A t0
 we have immediately

=
Z 2−Z 1

Z 2Z 1

=
2 Z 2

Z 2Z 1

(18)

These results are identical to the normal incidence case except
that we need to use the wave impedance (9) in place of the
intrinsic impedance.

E polarization

We will now use the electric vector potential to represent the
fields:

F iz=F i0 e
− jβ

x
x
e
− jβ

y
y
e
− j β

1z
z

F rz=F r0 e− jβx x e− jβ y y e jβ1z z

F tz=F 0e− j βx x e− j βy y e− jβ2 z z

(19)

These fields will have no E z  component. Since E is parallel
to the interface we will refer to this as the E polarization case.
The tangential components of the field are given by

E x=−
1

∂
∂ y

F z

E y=   1

∂
∂ x

F z

H x=−
j


∂
∂ x

∂
∂ z

F z

H y=−
j


∂
∂ y

∂
∂ z

F z

(20)

The wave impedance is

E x

H y
=

−
1

∂
∂ y

F z

−
j

 
∂
∂ y

∂
∂ z

F z

=


 z

(21)

or

Z=
ωμ
βz

(22)

for  E polarization.  When  βz=β=ω√μϵ  then  Z=η .  Note
that in general the wave impedance is different for the H (9)
and E (22) polarizations and can be complex.

From (20) we see that if 

1
ϵ1
(F i 0+F r0)=

1
ϵ2

F t 0 (23)

at z=0  then E x , E y
 will be continuous across the interface.

To get the H x , H y
 components to be continuous, we require

that

     
j

ωμ1ϵ1
(− j β1 z F i0+ j β1z F r0)=

j
ωμ2 ϵ2

(− jβ2z F t0) (24)

Solving for F t 0  in both of these equations and equating those
expressions gives us

F t 0=
ϵ2

ϵ1
(F i0+F r 0)

=
μ2

μ1

ϵ2

ϵ1

β1 z

β2 z
(F i 0−F r 0)

(25)

or

F i 0+F r0=
Z 2

Z 1

(F i 0−Fr 0) (26)

The solution is

F r0=F i0

Z 2−Z 1

Z 2+Z 1

(27)

Then

F t 0=F i0

ϵ2
ϵ1

2 Z 2

Z 2+Z 1

(28)

The reflection coefficient is

ρ=
E rx

E ix

=
E ry

E iy

=
F r0

F i 0

(29)
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and the transmission coefficient is

τ=
E tx

E ix

=
E ty

E iy

=
1 /ϵ2

1 /ϵ1

F t 0

F i0

(30)

so

ρ=
Z 2−Z1

Z 2+Z1

τ=
2Z 2

Z 2+Z1

(31)

The expressions for   ,  are identical in the two cases, but
keep  in  mind that  the impedance  depends  on  the particular
polarization. 

Lossless media

Up until now we have considered the general case where  ,
can be complex in either or both media. If  ,  are real, then

=  is real. We will write

x=sin   cos 
 y=sin  sin  
z= cos  

(32)

as the most general set of x , y ,z
 with x

2
 y

2
 z

2
=

2 . As

illustrated below, the angles   ,  represent the direction of
propagation  (the  Poynting  vector)  in  spherical  coordinates.

The angle between P and the z axis is   while the projection

of P into the x-y plane makes an angle of   with the x axis.

For H polarization the wave impedance (9) is 

Z=
 z


=
  cos  


= cos   (33)

Since  ∣cos  ∣≤1  we have  Z≤ .  For  the  E  polarization
case the wave impedance (22) is 

Z=
ωμ
βz
=

ωμ

ω√μ ϵ cos(θ)
=η/cos(θ) (34)

and Z≥ . The geometric interpretation of this is shown in the
following figure.

For H polarization the tangential component of E involves a
cos    projection  factor  while  for  E  polarization  the

tangential component of H contains this factor. With Z being
the ratio of E to H tangential components, we get a  cos  
factor  for  H  polarization  and  a  1/cos     factor  for  E

polarization.

Snell's law

If  medium  1  has  1=1 1
 and  angles  1,1

 and

medium  2  has  2=2 2
 and  angles  2,2

,  then  the

continuity of x , y
 at the boundary requires

βx=β1 sin (θ1)cos(ϕ1)=β2sin (θ2)cos (ϕ2)

β y=β1sin (θ1)sin(ϕ1)=β2sin (θ2)sin (ϕ2)
(35)

Taking the  ratio  of  these  equations gives  tan ϕ1=tan ϕ2  or
ϕ2=ϕ1 . We then have 

β1sin (θ1)=β2sin (θ2) (36)

If we divide both sides by  00
 and define the  index of

refraction as

n=√
μ ϵ
μ0 ϵ0

=√μ r ϵr (37)

then we obtain Snell's law

n1sin (θ1)=n2 sin(θ2) (38)

This is illustrated below for the case  ϕ2=ϕ1=0  which gives
βy=0  so that the incident and transmitted Poynting vectors

all lie in the x-z plane.
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A graphical derivation of Snell's law is given in the following
figure.  Again,  we take  2=1=0  so  that   y=0 .  The  x

projection  of  each  propagation  vector  ( x
)  is  the  same.

Therefore, the differing vector lengths =  necessitate

different z projections and corresponding different propagation
angles 2=1

. 

Critical angle

Interesting special cases of Snell's law might arise where the
incident  power  is  either  completely reflected  or  completely
transmitted. With x , y

 fixed, z
 is determined by

 z=±2 − x
2− y

2 (39)

If


2
2 2x

2
 y

2


2
1 1 (40)

then z
 will be real in medium 1 but imaginary in medium 2.

That  is,  in  medium 2  we will  have  z=− j  z
,  and  the  z

dependence of the field is exponentially decaying, e−z z . 

In this case, for either E or H polarization, the impedance Z 1

will  be  real  while  Z 2
 will  be  imaginary.  Therefore

∣Z 2−Z 1∣=∣Z 2Z 1∣  and  ∣∣
2
=1 ,  and all incident power is

reflected. This is sometimes called total internal reflection. It
is the principle on which fiber optic waveguides are based.

The condition on the angle 1
 for total internal reflection is

βx
2
+β y

2
=ω

2
μ1 ϵ1sin 2

(θ1)≥ω
2
μ2 ϵ2 (41)

or 1≥ c
 where the critical angle is 

θc=sin−1√
μ2 ϵ2
μ1 ϵ1

=sin−1(n2

n1
) (42)

We can also  see  this  from Snell's  law.  When  1= c
 then

Snell's law requires  2=
 and the transmitted field travels

parallel to the interface. Therefore, no power is propagated in
the z direction, and all incident power must be reflected. When

1c
 Snell's law would require  sin 21  and there is no

real solution for 2
. In this case, formally, 2

 would become

complex. For example, if  2= j / 2  then using Euler's

formula we obtain

sin  j / 2 =cosh   (43)

and for real   ,  cosh    can take on any value from 1 to

infinity.

Note that critical angle does not depend on the polarization.
Also note that we need to have n1n 2

 to obtain a real value

for  the  critical  angle.  That  is,  total  internal  reflection  only
occurs  when the first  medium is “optically denser” than the
second medium.

Brewster angle

If  Z 2=Z 1
 then  =0 ,  there  is  no  reflected  field  and  all

incident power is transmitted. For  E polarization this would
require

 1/cos  1 = 2/ cos 2  (44)

or

cos2
 2 =

12

1 2

cos2
 1

(45)

From Snell's law we know that

sin2
 2 =

1 1

 2 2

sin 2
 1

(46)

Since sin 2
 2 cos 2

 2 =1  we can write

1=
1 1

2 2

sin2
 1 

12

1  2

cos 2
 1

=
1 1

2 2

sin2
 1 

12

1 2

[1−sin 2
 1]

(47)

Solving for sin   1  we have

EE518: Advanced Electromagnetic Theory Scott Hudson 2015-02-23



3e.5

sin 1=
2

1

−
2

1

1

 2

−
2

1

(48)

For  the  common  case  of  non-magnetic  materials  where

1=2=0
 the  only  solution  would  be  the  trivial  case

1=2
 where the two media are the same. The problem then

reduces  to  a  plane  wave  propagating  in  an  infinite  simple
medium. 

For H polarization Z 2=Z 1
 becomes

 1 cos  1 = 2 cos  2 (49)

or

cos2
 2 =

21

2 1

cos2
 1

(50)

Using sin 2
 2 cos 2

 2 =1  and Snell's law we now have

1=
1 1

2 2

sin 2
 1 

21

2 1

[ 1−sin 2
 1]

(51)

Solving for sin   1  we obtain

sin  1=
 2

1

−
2

1

 1

2

−
2

1

(52)

If 
2=1=0

 the argument of the square root is 

1−
2

1

 1

2

−
2

1

= 2

1−2

 1
2− 2

2
=

2

12

(53)

and we have 1=B
 where

B=sin−1  2

 12

(54)

is the  Brewster angle. Note that unlike the critical angle, the
Brewster  angle  is  polarization  dependent  and  will  exist  for
both the  12

 and  12
 cases.  At the Brewster  angle

none  of  the  H  polarization  is  reflected.  Consequently,  the
reflected field can contain only E polarization. Therefore an
incident field with arbitrary polarization will be E polarized
upon reflection at the Brewster angle. One application of this
is the “Brewster window” employed in some laser cavities to
maintain a given linear polarization.

Lossy media

Let's  now consider  the  case  where  medium 1  is  lossless  (

1 ,1
 real) while medium 2 is lossy (one or both of  2 , 2

complex). We will not use Snell's law at first, but will go back
to "first principles." In medium 1 x , y

 are real, and medium

2  must  have  the  same  x , y
 values.  Therefore,  the  z

propagation constant must be complex in medium 2. We will
write

 c2z= 2z− j2z=2 22−x
2− y

2 (55)

and the functional dependence of all field vectors in medium 2
will have the form

e− j  x x e− j  y y e− j 2z z e−2z z (56)

This is a plane wave propagating in a direction determined by
the  propagation  constants   x , y ,2z

 and  exponentially

decaying  in  the  z direction.  The  wave  impedance  will  be
complex. For H and E polarization we have

Z H=
2z− j2z

2

Z E=
2

2z− j2z

(57)

In lossy media Snell's law still "works" but it not so simple.
Since n2=2 2/0 0

 is complex, Snell's law

n1 sin1=n2sin 2 (58)

will require a complex angle  2
.  That is, we will need for

sin 2  to have a complex part  to somehow cancel out the

complex part of n2
 so the product is equal to the real quantity

n1 sin 1 . What is the sine of a complex angle? Let's write

2= j  (59)

Using a trig identity we have

sin  j=sin  cos j cos sin j  (60)

Using Euler's formula we obtain

cos j =
e j j e− j j 

2
=cosh  

sin j =
e j j 

−e− j j 

2 j
= jsinh 

(61)

So

sin j=sin  cosh  j cos  sinh   (62)

Snell's law requires

1 sin1= 2− j2sin  j  (63)

or,  as  a  shorthand  1 sin1=2− j2R jI  .  The

imaginary  parts  of  both  sides  must  be  zero,  so  we  have
 2 I=2 R  or  I=2 /2R .  Then  1 sin1=2 R2 I

which is 2 R2
2 /2R . Putting these together 
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1 sin1=2
2

2

 2
sin   cosh  

2 tan  =2 tanh

(64)

Clearly it is simpler to use the "first principles" approach in
lossy media. 

Layered media

For  the  normal  incidence  case  (previous  lecture)  we
considered general layered media. We obtained reflection and
transmission  coefficients  for  the  three-media  case  and  an
effective impedance formula that could be applied recursively
for arbitrary numbers of layers. We could repeat the analysis
for the oblique-incidence case, but a little thought shows that
we would end  up doing exactly the  same calculations.  The
only difference would be the substitutions

      Z
 k w k kz− jkzwk

(65)

where Z is the appropriate wave impedance (57) and

 x
2 y

2 kz− jkz 
2=2k k (66)

In  addition,  the  fields  in  every layer  will  have  a  factor  of

e
− j x x

e
− j  y y

,  all  with  the  same   x , y
 values,  as

determined by the incident wave. With these substitutions, all
of  the results  derived  for  the normal-incidence  case  can be
modified to apply to the oblique-incidence case. 
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