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Lecture 3c

One-dimensional inhomogeneous media

Introduction

In the previous lectures we have developed tools to analyze
layered media in which   ,  have different constant  values
over various intervals of one coordinate. This is a particular
class of inhomogeneous media – piecewise simple media. In
that  case  we  can  use  homogeneous  solutions  within  each
simple medium and then apply boundary conditions at  each
interface.  In  this lecture we want to investigate some of the
subtleties of general inhomogeneous materials. We will limit
consideration to source-free, non-magnetic materials for which
=0  everywhere. 

Inhomogeneous Helmholtz equation

Refer to Equation (42) of Lecture 2a. This is a wave equation
for  E assuming  constant  μ  but  arbitrary  ϵ .  If  μ=μ0 ,
ϵ=ϵ0ϵr(r)  and the medium is source-free, this reads 

∇
2E+ω2

μ0 ϵ0 ϵr(r)E=∇(∇⋅E) (1)

Since

∇⋅E=
∂ Ex

∂ x
+
∂ E y

∂ y
+
∂ E z

∂ z
(2)

The right-hand side will be zero if E has only one component
and there is no dependence on the corresponding coordinate. A
one-dimensional case would be 

E=a x E x  z  (3)

with =0 r  z  . The Helmholtz equation becomes

E x ' '  z 0
2
r  z E x  z =0 (4)

A two-dimensional case would be

E=a z E z x , y  (5)

with =0 r  x , y  . The Helmholtz equation is then

∇
2 E z x , y  0

2
r  x , y E z x , y =0 (6)

In  these  cases  we  obtain  the  “inhomogeneous  Helmholtz
equation” which is identical to the homogeneous equation with
the substation of a spatially varying permittivity. 

In general, however, the right-hand side of (1) is not zero. In
fact, in a source-free medium q=0 , so

∇⋅ E= ∇⋅EE⋅∇ =0 (7)

Therefore

∇⋅E=−E⋅
∇ 


(8)

However,  if  the permittivity function is  very “smooth” then

∣∇ ϵ/ϵ∣ ,  which  is  the  maximum  fraction  change  in  the
permittivity with respect to position, will be very small. If so
then ∇ ∇⋅E ≈0  and

∇
2 E2

0 0  r  r E≈0 (9)

Therefore, in a “slowly varying” inhomogeneous medium the
inhomogeneous Helmholtz equation is approximately valid. In
special cases, such as those mentioned above, it is rigorously
valid. 

One-dimensional inhomogeneous media

If  ϵ=ϵ0ϵr(z)  and  we  take  E=â x E x (z)  then  we  have
(rigorously)

E x ' ' (z)+β0
2
ϵr (z)E x (z)=0 (10)

This is a 2nd order HLODE and can be solved by the power
series methods we discussed at  the beginning of the course.
Let's consider an example of a linear permittivity profile of the
form

ϵr (z)=a+b z (11)

Then

E x ' ' (z )+[A+B z ]E x ( z)=0 (12)

where A=0
2 a  and B=0

2 b . It's convenient to do a change
of  variable  u= B1 / 3

 z A /B  .  This  gives  the  simpler
equation

f ' '  u u f u =0 (13)

This  is  a  2nd order  HLODE with  p u =0  and  q u =u .
These are analytic functions, so we can find solutions of the
form

f  u =∑
n=0

∞

a n u n
(14)

Substituting into the HLODE we obtain

∑
n=2

∞

n  n−1  an u n−2
∑

n=0

∞

an u n1
=0 (15)

which we can rewrite as

∑
n=2

∞

n n−1  an u n−3
∑

n=3

∞

an−3 un−3
=0 (16)

There is one term in the first series with u−1  ( n= 2 ). This
gives us the condition  a2=0 . For all other powers of  u we
obtain the condition

a n=−
1

n (n−1)
a n−3 (17)

With a0, a1  arbitrary and a 2=0 , this specifies all remaining
coefficients.  This  conveniently  breaks  into  two  series,  one
starting with a0  and one with a1
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f 1u =∑
k=0

∞

a3 k u 3 k

f 2 u =∑
k=0

∞

a3 k1 u3 k1
(18)

If  we  take  a0= a1=1 ,  then  we  obtain  the  two  functions
shown in the following plot.

These look somewhat like a cosine and a sine with decreasing
amplitudes and decreasing wavelengths.

A general solution will have the form

f  u =c1 f 1u c 2 f 2 u  (19)

Let's  use  this  to  solve  the  problem  of  reflection  and
transmission  from  a  smooth  transition  between  two
permittivity values. Let's take

r={
r1 z−w

abz −w≤z≤0
r2 z0

(20)

where  a=r2  and  b= r2−r1 /w .  We  have  A= 0
2 a ,

B=0
2 b  and  u= B1 / 3

 z A /B  .  If  we  take  the  incident
electric field to have unit amplitude, then we can write

E x  z={
e− j  1  zw

 e j 1  zw  z−w
c1 f 1 u c2 f 2  u  −w≤z≤0

 e− j 2 z z0

(21)

where   ,  are the reflection and transmission coefficients.

The boundary conditions are that  E x , H y  are continuous at

z=−w ,0 . From Faraday's law

d
dz

E x=− j 0 H y (22)

so the continuity of H y  is equivalent to the continuity of the

derivative of E x . Therefore, defining  

u0= A/ B2 / 3

uw= B1 / 3 −w A/ B 
(23)

we have at z=0  

c1 f 1u 0c2 f 2 u0 =

[ c1 f 1 ' u 0 c2 f 2 ' u 0] B1 / 3
=− j  2

(24)

and at z=−w  

1=c 1 f 1 uw c 2 f 2 u w

− j 11−=[ c1 f 1 ' uw c 2 f 2 ' uw ]B
1 / 3 (25)

This is four equations in four unknowns. We can put this into
matrix form as

M=
0 −1 f 1 u0  f 2u 0 

0 j 2 f 1 '  u0 B
1 / 3 f 2 '  u0 B

1 / 3

−1 0 f 1u w f 2 uw 

− j 1 0 f 1 ' u w B 1/ 3 f 2 ' u w B1 / 3 (26)

and

Y=
0
0
1

− j  1
 (27)

and then solve





c 1

c 2
=M−1 Y (28)

As an  example,  if  we take  r1=1 ,  r2=4  and  0= 2
(free-space wavelength 1) and vary w from 0 to 2, we get the
following result for ∣∣

For  w0  we  obtain  the  value  1/3  corresponding  to  the
piecewise  constant  case  ∣∣=∣1 / 2−1 / 1 / 21 ∣ .  As  the
transition  becomes  more  gradual,  the  reflection  coefficient
drops quite rapidly. This is a general result; smooth transitions
produce very small reflected fields. This idea leads to a simple
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version of the so-called WKB approximation. 

WKB approximation

Consider  a  lossless  dielectric  with  a  very  smooth  (real)
permittivity profile  =0 r  z  . As we've seen above, very
little of the incident energy will be reflected in this case. Let's
assume no  energy  is  reflected.  We  therefore  have  that  the
Poynting  vector  is  a  constant.  Since  ϵ  varies  slowly,  we
might  expect  that  over  small  intervals  of  z the  field  would
behave as a plane wave in a simple medium where E=H  .
We will therefore write

E x  z = E 0 a  z  e− j z 

H y  z = E x  z 
1
 z

(29)

where a  z  is a real amplitude function and  z   is a real
phase function. The (real) impedance is

 z = 0  1
r  z 

(30)

The  Poynting  vector  points  in  the  z direction  and  has
magnitude 

P= 1
2 ∣

E 0∣
2 a2


(31)

For this to remain constant we must have

a x=  x (32)

In a plane wave the phase is  = z ,  so  d / dz=0 r .
Taking

d 
d z
= z = 0 r z  (33)

we obtain

 z=00∫
0

z

r sds (34)

Equations (29), (32) and (34) are a simple form of the  WKB
approximation for  wave  propagation  in  a  slowly-varying
inhomogeneous medium. 
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