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Lecture 3b

Reflection and transmission 
at normal incidence

Introduction

We  have  considered  plane  wave  solutions  to  Maxwell's
equations in a simple medium. Now we consider what happens
when a plane wave strikes an interface between two different
media.  Due to  differing impedances on the two sides of the
interface, the way cannot propagate from one medium to the
next without generating an additional  reflected wave. This is
the simplest example of a scattering problem. (In EE 519 we
analyze scattering problems in great depth.)

Reflection and transmission coefficients

Let's  consider  a  planar  interface  between  two  semi-infinite
media.  Let  the  permittivity and  permeability  be  1,  1  for

z0  and 2,  2  for z≥0 . At frequency   the propagation

constants  are  β1=ω√μ1 ϵ1 ,  β2=ω√μ 2ϵ2  and  the  intrinsic

impedances are η1=√μ1/ ϵ1 , η2=√μ 2/ϵ2 . Any or all of these
quantities may be complex. Consider the following illustration

For  z≤0  we have an incident plane wave

Ei=â x E0 e
− jβ

1
z

H i=â y

E0
η1

e− jβ
1
z

(1)

propagating  in  the  +â z  direction.  For  z≥0  we  have  a
transmitted plane  wave,  also  propagating  in  the  +â z

direction,

Et=â x τE 0 e
− jβ

2
z

H t= â y τ
E0
η2

e− jβ
2
z

(2)

where   is the transmission coefficient. If η1≠η2  there is no
way we can have the tangential components of both  E and H

match at  z=0  if we have only these two fields. Instead we
require a reflected plane wave in z≤0 ,

Er=   â xρE 0 e
jβ

1
z

Hr=−â y ρ
E0
η1

e jβ
1
z

(3)

that  propagates  in  the  −az  direction.  Here    is  the
reflection coefficient. With these three plane waves, the total
electric and magnetic field  components are

E x={E0 e− j β1 z
+ρE0 e j β1 z z≤0

τ E0 e
− jβ

2
z

z≥0
(4)

and

H y={
E0
η1

e
− jβ

1
z
−ρ

E0
η1

e
j β

1
z

z≤0

τ
E0
η2

e− jβ2 z z≥0

(5)

These expressions  must be continuous  at  z=0  since  there
they form the tangential components of E and H. This gives us
the equations

1+ρ=τ
1−ρ
η1
= τ
η2

(6)

The solution is

ρ=
η2−η1

η2+η1

τ=
2η2
η2+η1

(7)

At the interface, the phasors of the reflected and transmitted
electric fields are, respectively,   and   times the phasor of
the  incident  electric  field.  If  either  of  the  impedances  are
complex,  then  the  reflection  and/or  transmission  coefficient
may be complex also. 

PEC limit

A perfect  electric  conductor  (PEC)  would  have   ' '∞ .
(Remember that the effective conductivity is  = ' ' .) Let
medium 2 be a PEC. Then η2=√μ 2/ϵ2→0  and it follows that

=−1
=  0

(8)

There is no transmitted electric field and the reflected field is
the negative of the incident field (at the interface). The total
electric field on both sides of the interface is zero. We could
say that the PEC "shorts out" the electric field. 

The total magnetic field at z=0  is H y=2 E0/ η1 . To see that
this  is  true  on  the  z≥0  side  note  that
τ/η2=2 /(η2+η1)→2 /η1  as η2→0 . However, if medium 2 is
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PEC then β2=ω√μ 2ϵ2→(1− j)∞  and the magnetic field goes
to zero for any finite value of z.

Interestingly, there is no difference in the ρ , τ  values between
the  cases  ϵ2=ϵ '− j∞  (PEC)  and  ϵ2=∞− jϵ ' '  (dielectric
with infinite dielectric constant).  The important point  is  that
∣ϵ2∣→∞  causes η2→0 . 

PMC limit

If  μ ' '→∞  then, by analogy with the PEC case, we call the
medium a “perfect magnetic conductor” (PMC). Let medium 2
be a PMC. Since ∣η2∣=√μ2 /ϵ2=∞  we have 

ρ=1
τ=2

(9)

It is easy to verify that H y=0  and E x=2 E0  on both sides of
the  interface  at  z=0 .  With  μ ' '→∞  we  again  get
β2=ω√μ 2ϵ2→(1− j)∞  and  the  electric  field  goes  to  zero

infinitely fast in medium 2. A PMC "shorts out" the magnetic
field. 

Another way to get the same values of ρ , τ  is to have ϵ1 '→∞
giving η1=0  with μ2,ϵ2  arbitrary (but finite). This suggests
that  the  interface between a  dielectric,  with  large dielectric
constant, and, say, free space, behaves as if free space were a
PMC. This is  probably the most practical application of the
PMC  idea,  and we will  return to  it  later when we consider
dielectric  waveguides  and  resonators  in  the  limit  of  large
dielectric constant. 

Power density

At the interface ( z=0 ) the Poynting vectors of the three plane
waves are

P i=  â z

1
2

Re{ 1
η1
∗}∣E0∣

2

P r=−â z
1
2

Re{ 1
η1
∗}∣E0∣

2
∣ρ∣

2

P t=   â z

1
2

Re{ 1
η2
∗}∣E0∣

2
∣τ∣2

(10)

The fraction  of  incident  power that  is  reflected,  Pr /P i ,  is
given  by  ∣ρ∣

2 .  The  fraction  of  incident  power  that  is
transmitted is not given by ∣τ∣2  due to the different impedance
factors  in  P i , P t .  The  fraction  of  incident  power  that  is
transmitted is 1−∣ρ∣

2 , which follows from the conservation of
power. Alternately, it is  ∣τ∣2[Re {1 /η2

∗
}] / [Re{1/ η1

∗
}] . If both

media  are  lossless  (real  impedances)  we  have
1−∣ρ∣

2
=∣τ∣

2
η1 /η2 .

Inverse problem

Given the impedances  η1,η2  we can calculate the reflection

coefficient   . We could call this the forward problem. Then
an interesting  (and  very practical)  variation  on  this  is  the
inverse problem: given  1,  determine  2 . For example, we
may have a material with unknown impedance. We place it in
air  (known   1 )  and  we  measure  the  reflected  field  to

determine  . We can solve (7) for  2  to obtain

η2=η1
1+ρ
1−ρ (11)

Therefore a reflection measurement gives us η2=√μ 2/ϵ2  and
so fixes the ratio  of the permeability to  the permittivity but
does not give us  2,  2  separately. However, if we know that

the material is non-magnetic, so 2=0 , then we can solve for

2  as

ϵ2=ϵ1(1−ρ
1+ρ)

2

(12)

This  method,  or  some  variation,  is  typically  how  one
determines permittivity at microwave frequencies. If we need to
determine  both  2,  2  then  an  additional  measurement  is
required.  A  combination  of  reflection  and  transmission
measurements is an effective way to fully specify the (possibly
complex) permittivity and permeability of a sample.

Reflection and transmission in layered media

Let's now consider a slab of material extending over 0≤z≤w
surrounded by two semi-infinite media so that

 ,={
1, 1 z0

2, 2 0≤z≤w

3, 3 zw

(13)

For z0  we will have incident and reflected fields.

E1= ax E 0 e
− j  1 z

 e j 1 z 

H1= a y

E 0

 1
e− j  1 z

− e j 1 z 
(14)

For zw  we will have a transmitted field

E3=a x E 0 e− j 3  z−w

H3=a y

E 0

 3

 e− j 3  z−w  (15)

Note that by writing the propagation factor as  e− j 3 z−w  we

are taking the surface  z=w  as our  phase reference for the
transmitted  wave.  This  the  most  convenient  for  algebraic
purposes, but we could have used a factor e− j 3 z  instead. The

result  would  be  an  additional  factor  of  e− j 3 w   in  our

expression for  . In both cases the transmitted field would be
the same. 
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Inside the slab 0≤z≤w  we can have plane waves propagating
in both the ±z  directions

E2=a x E0 ae− j 2 z
be j 2 z

H 2=a y

E0

2

a e
− j 

2
z
−be

j 
2

z 
(16)

with  a and  b unknown coefficients. The boundary conditions
E1=E2 , H1=H2  at z=0  give us the equations

1=ab
1−
 1

=
a−b
 2

(17)

We can rewrite these as

ab=1

a−b=1−
2

1

(18)

Adding and subtracting allows us to solve for a and b

a=
1
2
[ 1 2/ 11− 2 /1]

b=
1
2
[1− 2/11 2/ 1]

(19)

The boundary conditions E2=E 3 , H2=H3  at z=w  give us
the equations

a e− j 2 w
be j 2w

=

ae
− j

2
w
−be

j 
2

w

 2

=


 3

(20)

Rewriting these we have

a e− j 2w
be j 2 w

=    

a e− j  2w
−be j 2w

=
 2

 3


(21)

Adding and subtracting these gives us

a=
1
2
 e

 j 
2

w
1 2/ 3

b=
1
2
 e

− j 
2

w
1− 2 / 3

(22)

Equating (19) and (22) eliminates a and b and results in

12 /1 1−2 / 1 = e  j 2 w 1 2/3 

1−2 / 1 12 / 1 = e− j  2 w
1− 2/3 

(23)

These are two equations in the two unknowns  , . Dividing
the second equation by the first, we have

1−2 /1 12 /1 

12 /1 1−2 /1 
=e− j 2 2 w 1−2 / 3

12 / 3

(24)

This is one equation in the single unknown   . Multiplying

the left side by  1/ 1  and the right by  3/3  produces

 1− 2  12 

 1 2  1−2 
=e− j2  2 w  3−2

 32

(25)

On the right we see what looks like a reflection coefficient.
Let's define

12=
 2− 1

 2 1

23=
 3− 2

 3 2

(26)

These are the reflection coefficients for the interfaces   1, 2

and   2, 3 ,  respectively.  If  we  divide  the  numerator  and

denominator of the left side of (25) by  1 1  we have

−12

1−12 
=e− j2  2 w

23 (27)

Solving for   we obtain

=
1223 e− j 2 2w

11223 e− j 2 2w (28)

To solve for the transmission coefficient, we can take the first
equation of (23) and divide through by 12 /1  to get

 e  j  2w 1 2/3

1 2/1
=1−12 (29)

so that

=e− j 2 w 1 2 / 1

1 2 / 3
[1−12] (30)

Since 

1−12=
11223 e− j 2 2w

11223 e− j 2 2w
−12

1223 e− j 22 w

112 23 e− j 22 w

=
1−12

2

11223 e− j 2 2w

(31)

we obtain 

=e
− j 

2
w 1 2 / 1

1 2 / 3

1−12
2

11223 e− j 2 2w (32)

An important special case is when  3= 1  and medium 2 is a
"window" of  width  w embedded  in  medium 1.  In  this  case
23=−21  and

=12

1−e− j 2 2w

1−12
2 e

− j 2
2
w

=e
− j 

2
w 1−12

2

1−12
2 e

− j 2
2
w

(33)
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If we measure   ,  then these become two equations in the

two unknowns 12  and e− j  2w . Solving for these provides us

with the values of √μ2/ϵ2  (from  2 ) and √μ2 ϵ2  (from 2 ).

Know  their  ratio  and  product  we  can  solve  for  2,2

separately.

Weak-scattering limit

An important special case is the weak scattering limit in which
the differences of the three impedances is small. This implies
that both  12 ,23  are small. Therefore the  1223  factor in
the  denominator  (28)  is  negligible  and  the  reflection
coefficient simplifies to

≈1223 e− j 2 2w (34)

Some of the incident field is reflected at z=0  (the 12  term).
The field  propagates  a  distance  w in  medium 2,  strikes  the
second interface and  generates  a  second  reflected  field  (the
23  term). This  propagates  w back  through medium 2  and

adds to the first reflection. The round trip through medium 2
accounts for the e− j 2 2w  factor. 

Of course the second reflected field would also generate an
additional  reflection  traveling in  the  +z direction  and  there
would in  fact  be an infinite  series  of reflections  at  the two
interfaces getting progressively smaller. In the weak scattering
approximation we neglect this multiple scattering effect. In the
exact expression (28) it is accounted for by the denominator.

Effective impedance

Suppose you measured the reflection coefficient given in  (28)
and you assumed it  was due to  a  single interface at  z=0

between  materials  with  impedances   1  and   .  From

=−1 /  1  you could solve for   as

η=η1
1+ρ
1−ρ

(35)

Now, from (28)

1±ρ=
1+ρ12ρ23 e

− j 2β
2
w
±[ρ12+ρ23 e

− j 2β
2
w
]

1+ρ12ρ23 e− j 2β2w (36)

Substituting this into our expression for   we get

η=η1

1+ρ12ρ23 e
− j 2β

2
w
+[ρ12+ρ23 e

− j 2β
2
w
]

1+ρ12ρ23 e− j 2β2w
−[ρ12+ρ23 e− j 2β2w

]

=η1

(1+ρ12)(1+ρ23 e
− j 2β

2
w
)

(1−ρ12)(1−ρ23 e− j 2β
2
w
)

=η1

η2
η1

1+ρ23 e− j 2β2w

1−ρ23 e
− j 2β

2
w

(37)

where in the last line we used  2= 1112 / 1−12  . If we

substitute

ρ23=
η3−η2
η3+η2

(38)

and  multiply  numerator  and  denominator  by   3 2 ,  we
obtain

η=η2

(η3+η2)+(η3−η2)e
− j 2β

2
w

(η3+η2)−(η3−η2)e
− j 2β2 w

=η2

η3(1+e
− j 2β

2
w
)+η2(1−e

− j 2β
2
w
)

η2(1+e− j2β
2
w
)+η3(1−e− j 2β

2
w
)

(39)

Finally, using

1+e
− j 2β

2
w
=e

− jβ
2
w

2 cos(β2 w)

1−e
− j 2β

2
w
=e

− jβ
2
w

2 j sin(β2 w)
(40)

we arrive at

η=η2

η3 cos (β2 w)+ jη2 sin(β2 w)

η2cos (β2 w)+ jη3 sin(β2 w)
(41)

This is the effective impedance of the combination of media 2
and 3. That is, a single medium with this impedance will give
the same reflection coefficient as the combination of media 2
and 3. 

The  effective  impedance  expression  simplifies  in  the  case
w0 .  Using 1st-order Taylor series for cosine and sine we

have

η≈η2

η3+jη2β2 w

η2+ jη3β2 w

≈η3+jβ2 w(η2−
η3

2

η2)
(42)

In the last line we used the Taylor series 1 /(1+x)≈1−x .

Impedance matching

An interesting special case is when the equivalent impedance is
η=η1  since this gives ρ=0 . We then say that the slab has

performed  impedance matching. Let's consider the important
case where media 1,2,3 are all lossless so η1,η2,η3  are real. If
cos (β2 w)=0  then

η=
η2

2

η3
=η1

(43)

if

η2=√η1η3 (44)

The  smallest  w that  gives  cos   2 w =0  corresponds  to

2 w= / 2  or w= 2/ 4 . That is, the slab is one-quarter of a
wavelength  (in  medium 2)  thick  and  its  impedance  is  the
geometric mean of the impedances of media 1 and 3. This is a
quarter-wave matching layer. 
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Another matching possibility is sin  2 w=0 . Then 

= 3=1 (45)

if  3= 1 , that is, if media 1 and 3 are the same. The smallest

w (other than the trivial case w=0 ) that gives sin  2 w=0

is  2 w=  or  w= 2/ 2 . Thus a dielectric window of half-
wavelength thickness (in the medium) is transparent.

Multi-layered media

Consider  a  material  consisting  of  N−1  slabs  with

impedances   1, ,N−1 ,  propagation constants  1, ,N−1

and widths  w1, , wN−1 . Assume these are layered on top of

a  semi-infinite  material  with  impedance  N .  To  get  the
effective impedance of the entire structure we can start with
N

e =N  and then iterate using

 k
e
=k

e  k1
e cos  k w k  j k

e sin k wk 

 k
e cos  k w k  j k1

e sin k wk 
(46)

until  we reach the effective impedance at  the first  interface,
 1

e . The reflection coefficient is then 

=
 1

e
− 0

 1
e
 0

(47)

assuming  the  incident  wave  is  traveling  in  medium  with
impedance  0 .

References

1. http://www.mellesgriot.com/products/optics/oc_1.htm

EE518: Advanced Electromagnetic Theory I Scott Hudson 2015-02-02


	Introduction
	Reflection and transmission coefficients
	Power density
	Inverse problem
	Reflection and transmission in layered media
	Effective impedance
	Impedance matching
	Multi-layered media
	References

