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Lecture 3a

Plane waves in simple media

Helmholtz equation in rectangular coordinates

In rectangular coordinates the (scalar) Helmholtz equation

∇
2 A

2 A=0 (1)

reads

∂
2 A

∂x 2


∂
2 A

∂ y2


∂
2 A

∂ z2


2 A=0 (2)

Here  A could represent any component  of  A,  F,  E,  H in a
source-free simple medium and 2=2   . Let's consider the
solution of this equation.

Separation of variables

The Helmholtz equation is an example of a partial differential
equation (PDE), an equation relating the partial derivatives of
a  function  of  several  variables.  In  general  PDE's  are  more
difficult to solve than ODE's, and there are fewer systematic
techniques  available.  One  of  these  is  called  separation  of
variables.  This  technique  only  works  in  certain  coordinate
systems, but when it does it converts a PDE into a system of
ODE's which we can then solved one-by-one using standard
techniques. 

The essence of separation of variables is to represent a three-
dimensional  function of  the variables  u,v,w as  a  product  of
three one-dimensional functions: Au , v ,w= f u g vhw .
We substitute this into the PDE and then attempt to collect all
terms containing the  u variable on one side of the equation.
This results in an equation of the form Bu =Cv , w . Since

Cv ,w   does not depend on u,  Bu   does not either. This

means that Bu =ku  where ku   is a constant. This provides
us  with an  ODE in  the  variable  u,  and  the  solution  is  the
function  f u  .  We  repeat  the  process  for  the  v and  w
variables to obtain the functions gu   and hu  .

In rectangular coordinates we look for a solution of the form
Ax , y , z= f xg yh  z  .  Substituting into the Helmholtz

equation results in

f ' ' g h f g ' ' h f g h ' '
2 f g h=0 (3)

where f ' '=d 2 f / dx2 , g ' '=d 2 g / dy2 , and h' '=d 2 h /dz2 .
Diving by fgh  gives us

f ' '
f


g' '
g


h' '
h


2
=0 (4)

and we can then write

f ' '
f

=−2 g' 'g 
h' '
h  (5)

The left-hand side is a function of x only. The right-hand side

is a function of y and z only. Therefore we have

f ' '
f

=− x
2 (6)

By calling our constant − x
2  we are using a little foresight. As

we will see, in many cases of interest f ' ' / f  is a negative real
number,  and   x  will  be  a  positive  number  representing  a
propagation constant. However, we could take  x  to be any
complex number, so − x

2  is completely arbitrary. 

We could have isolated  g ' ' /g  or h ' ' /h  instead giving us

g' '
g

=−y
2

h' '
h

=− z
2

(7)

For equation (4) to be satisfied we require

 x
2
 y

2
 z

2
=

2 (8)

Now, the general solution of

f ' ' x
2 f=0 (9)

can be expressed in the form

f =ae− j  x x
be j  x x (10)

or in the form

f=acos  x xbsin  xx (11)

and likewise the y and z functions. We will use the following
compact  notation  to  represent  the  separation  of  variables
solution

A={e
− j x x

e
j

x
x }{e

− j  y y

e
j 

y
y }{e

− j z z

e
j 

z
z } (12)

The  braces  denote  an  arbitrary  linear  combination  of  the
functions inside. Remember that the constants  x , y , z  can
be  any  complex  numbers.  The  only  constraint  is
 x
2
 y

2
 z

2
=

2 . 

Using separation of variables we have found a certain family
of solutions.  But,  that  doesn't  mean that  all  solutions of the
Helmholtz  equation are  of  the form  f  xg  yh  z  .  What
about  solutions  that  are  not  separable?  Just  as  a  one-
dimensional function can be represented as an inverse Fourier
transform,  a  three-dimensional  can  be  represented  as  an
inverse three-dimensional Fourier transform of the form

A x , y , z =
1

2  
3∭S  x ,  y , z  [e

− j   x x  y y  z z ] d  x d  y d  z
(13)

The  product  in  the  brackets  is  one  of  our  separation  of
variables type solutions. So, although there are solutions of the
Helmholtz  equation  which  are  not  of  the  form  (12),  all
solutions can be represented as a superposition of functions of
the form (12). 
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Plane waves and intrinsic impedance

Let's  consider  a  field  in  a  source-free  simple  medium that
depends on z only. The Helmholtz equation reduces to

∂
2 A

∂ z2


2 A=0 (14)

A general solution is a linear combination of e− jβ z  and e jβ z .
Let's consider only  e− jβ z  dependence for now. In a source-
free medium Maxwell's equations are

H=
j

 
∇×E

E=
− j


∇×H
(15)

The z component of H is

H z=
j

   ∂Ey

∂x
−

∂Ex

∂ y  (16)

But,  we  are  assuming  there  is  no  x or  y dependence,  so
H z=0 .  Similarly  E z=0 .  This  shows  that  the  field  is

transverse to the z axis, and our solution will have the form

E x=Ex0 e
− j  z

E y=E y0e
− j  z

H x=H x0e
− j  z

H y=H y0 e
− j  z

(17)

where the constants Ex0  etc. are arbitrary complex numbers.
From (15)

H y=
j



∂ Ex
∂ z

=



Ex0e

− j z

(18)

so

H y0=



E x0 (19)

or

H y0=
1

E x0 (20)

where

=
 


=

 

  
= 


(21)

is the intrinsic impedance of the medium. It has units of ohms.
Note that in a lossless medium, with  ,  real,   is real. In a
lossy medium it will in general be complex. Similarly we find

H x0=−
1

E y0 (22)

Calling

E0= a x E x0 a y E y0

H0=a x H x0 a y H y0

(23)

we see that

H0=
1


a z×E0 (24)

Our solution is 

E=E0 e− j  z

H=H0 e− j z (25)

This is called a plane wave since the fields are the same at all
points of the plane z=const . The intrinsic impedance of the
medium

η=√ μ

ϵ (26)

depends only on the permeability and permittivity and will be
complex if those parameters are. The impedance of free space
is approximately 377 . 

Consider  the  general  case  where  c= '− j ' '  and

c= ' − j ' ' .  The  propagation  constant  will  be  complex,

and  we   write  βc=ω√μcϵc=β− jα .  We  then  have,  for
example, 

E x  z , t =Re {E x0 e− z e− j z e j t
}

=∣E x0∣e− z cos  t − z E x0 
(27)

For a  time change   t  the argument of the cosine remains

constant if the position change is   z=/ t .  Our field
therefore propagates along the z axis with phase velocity 

v p=
ω
β

=
1

Re√μcϵc

(28)

The phase velocity in free space is the speed of light

c=
1

√μ cϵ0

≡299,792,458 m/s (29)

The distance between peaks of the cosine is the wavelength 

=
2


=

2 

Re {c}
(30)

A plane  wave  propagating  in  an  arbitrary  direction  can  be
specified as follows. Choose a direction of propagation  a P

and choose any electric field phasor E0  that is orthogonal to

a P , that is,

a P⋅E0=0 (31)

The magnetic field phasor is 

H0=
1
 c

a P×E0 (32)
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and the fields are

E=E0 e− a P⋅r e− j  a P⋅r

H=H0 e
− a

P
⋅r

e
− j  a

P
⋅r (33)

where  − j =c c . The time-average Poynting vector
is 

P=
1
2

Re E×H ∗ 

= a P e−2 aP⋅r 1
2

Re{ 1

 c
∗ }E 0

2
(34)

If the medium is lossy ( ≠0 ) then the power density of a
plane wave will decay by e−2 L  after propagating a distance
L. Defining the skin depth of a material to be

=
1


(35)

the power density decreases by a factor of  e−2
≈0.135  after

propagating a distance  . 

Propagation constant

For a general simple medium we have

c=− j = cc (36)

This is in general a complex number. It's magnitude squared is

∣ c∣
2
=

2


2
=

2∣c c∣ (37)

We also have

Re[ c
2]= 2−2=2 Re [ cc ] (38)

By adding and subtracting these two equations we can solve
for

β= ω

√2 √∣μ cϵc∣+Re [μcϵc ]

α= ω
√2 √∣μ cϵc∣−Re [μ cϵc ]

(39)

The second expression makes clear that if  ,  are both real
then =0  and the medium is lossless.

Most media that do not contain ferromagnetic materials (iron,
cobalt,  etc.)  have a permeability essentially equal  to that  of
free space. For such a non-magnetic medium we have

c=0

c= '− j  ' '
(40)

so

√∣μ cϵc∣±Re [μcϵc ]=√μ0 ϵ' √√1+(ϵ ' ' /ϵ ')2
±1 (41)

The double-square-root expression, with x = ' ' /  ' , has the
limiting behavior

√√1+x 2
+1≈{√2 for x≪1

√ x for x≫1

√√1+x 2
−1≈{

x

√2
for x≪1

√ x for x≫1

(42)

These two limits correspond to low-loss and high-loss media.
The dimensionless  ratio   ' ' / '  is  called  the  loss  tangent.
Instead of specifying   '  and   ' '  it is often more useful to

specify  the  dielectric  constant r ' = ' /0  and  the  loss

tangent tan = ' ' / ' .

Low-loss medium ("good dielectric")

This is the case of small loss tangent,   ' ' / '≪1 . Using the

x≪1  expressions from above we can write

β= ω
√2

√μ0 ϵ0 √ϵr ' √2 (43)

and 

α= ω

√2
√μ0 ϵ0 √ϵr '

ϵ ' ' /ϵ '

√2
(44)

so 

β=β0 √ϵr '

α=β0√ϵr '
(ϵ ' ' /ϵ ' )

2

(45)

where β0=ω√μ0 ϵ0 =ω/c  is the propagation constant in free
space at the given frequency. In a low-loss medium ≪  so
a wave will travel many wavelengths ( =2  / ) before it is
significantly attenuated. Another way to express this is λ≫δ .
Note that α/β=(ϵ ' ' /ϵ ' )/2  so the loss tangent is 2α/β . 

High-loss medium ("good conductor")

This is the case of high loss tangent,  ' ' / '≫1 . Using the

x≫1  expressions we find

α=β=β0 √ϵr '√ ϵ' ' /ϵ '
2

(46)

In  a  high-loss  medium  =  so  a  wave  will  experience
significant loss over a single wavelength. We have =2   .

The following plot shows the electric field amplitude for two
cases. In both = 2 , =1 . The slowly decaying curve has
α=β/10  while the other curve has = .
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Polarization

Going back to a plane wave propagating in the z direction, the
electric field is

E=E 0 e− j  z (47)

with

E0 =a x E x0 a y E y0 (48)

Let's  see how this field behaves through time at  z=0 . We
have 

E x  t =Re { E x0 e j  t }=∣E x0∣cos  t E x0 

E y t =Re {E y0 e j t }=∣E y0∣cos  t  E y0 
(49)

Subtracting   E x0  from  each  argument  (equivalent  to  a
change of time reference) we have

E x  t =∣E x0∣cos t 
E y t =∣E y0∣cos  t

(50)

where  = E y0− E x0 .  There  are  two important  special
cases.

Linear polarization

If =0,  then 

E xt =  ∣E x0∣cos  t 

E yt =±∣E y0∣cos  t 
(51)

and  E yt /E x t =±∣E y0∣/∣E x0∣ .  Over  time the  electric  field

traces out a line with slope ±∣E y0∣/∣E x0∣ . This is the case of
linear polarization. We can use any two orthogonal directions
as the x and y axes. For terrestrial applications we usually use
the  ground  as  a  reference  and  talk  about  vertical (V)  and
horizontal (H) polarization. 

Circular polarization

If =∓ /2  and ∣E y0∣=∣E x0∣=∣E0∣  then

E xt =  ∣E0∣cos  t 

E yt =±∣E0∣sin t 
(52)

This  is  the  case  of  circular  polarization where  the  electric
field traces out a circle. The rotation can be in either of two
directions.  If  E y t =∣E 0∣sin  t   we  have  right-hand
polarization. If you point your right thumb in the direction of
propagation, the electric field rotates in the direction of your
curled fingers. Conversely if E y t =−∣E 0∣sin t   we have
left-hand polarization. 

Elliptical polarization

Any case  other  than linear  or  circular  polarization is  called
elliptical polarization because the electric field traces out an
ellipse. The ellipse has an axial ratio 

∣Emax∣
∣E min∣

=±cot    (53)

where

sin  2  =
2∣E x 0∣∣E y 0∣

∣E x 0∣
2∣E y 0∣

2
sin  (54)

The tilt angle   between the major axis of the ellipse and the
x axis is given by

tan  2  =tan  2  cos   (55)

where

tan   =
∣E y 0∣
∣E x 0∣

(56)

(see the Mott reference for details). 

References

1. Mott,  H.,  Antennas  for  Radar  and Communications:  A
Polarimetric Approach, Wiley, 1992, ISBN 0-471-57538-
0. (Section 3.3)

EE518: Advanced Electromagnetic Theory I Scott Hudson 2015-02-02


	Helmholtz equation in rectangular coordinates
	Plane waves and intrinsic impedance
	Propagation constant
	Polarization
	References

