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Lecture 2d

Electromagnetic theorems

Introduction

Most  of  this  course  will  be  devoted  to  solving  Maxwell's
equations (usually as expressed in the Helmholtz equation) in
different  coordinate  systems  and  with  different  boundary
conditions. However, there are some important general results
we can derive from Maxwell's equations without reference to a
particular coordinate system or boundary conditions. We will
derive a few of these important electromagnetic theorems in
this lecture. 

Poynting's theorem

In many applications it  is of great  importance to be able to
quantitatively describe how an EM field carries energy from
one point to another. This is the basis of vision, radio,  fiber
optics  and  many,  many  fundamental  phenomena  and
technologies.

The  units  of  E and  H are  V/m and  A/m,  respectively.  A
product  of E and H will therefore have units of W/m2  which
corresponds to  a  power density,  or  intensity.  If  the product
produces  a  vector  it  might  correspond  to  power  flow since
there will be a direction associated with the W/m2 . This is a
clue that E×H , or something closely related, might be what
we are looking for.

Consider

∇⋅E×H∗=H∗⋅∇×E−E⋅∇×H∗ (1)

The  divergence  term  will  allow  us  to  use  the  divergence
theorem. The conjugate will allow us to end up with terms like
E⋅E∗=E2  which are related to energy density. Faraday's law

and the conjugate of Ampere's law are

∇×E=− j c H

∇×H∗
=Ji

∗
− j c

∗E∗ (2)

where  we  explicitly  allow  for  complex  permittivity  and
permeability. Any conductivity present is accounted for in the
complex  permittivity.  Substitution  of  this  into  the  previous
equations gives

∇⋅E×H*=H*⋅− jc H−E⋅Ji
*− jc

* E*

=− j c H 2
 jc

* E2
−E⋅Ji

* (3)

From the divergence theorem we have

∭∇⋅E×H* dv=∯E×H* ⋅ds (4)

Therefore

   ∯E×H* ⋅ds=∭[− j c H 2 j  c
* E2−E⋅Ji

* ]dV (5)

or

∯E×H* ⋅ds=−∭E⋅Ji
* dv

  −∭ j '− j ' ' H 2 dv

  ∭ j ' j ' 'E2 dv

(6)

Taking 1/2 the real part of each side, we obtain

∯
1
2

ReE×H*
⋅ds∭

1
2

ReE⋅Ji
*
dv

          1
2
∭  ' ' H2 dv

1
2
∭ ' ' E2 dv=0

(7)

Identifying = ' ' , m=m  ' '  and rearranging we have

−∭V

1
2

ReE⋅Ji
*
dV =∯S

1
2

ReE×H*
⋅ds

               1
2∭V

m H 2 dV 
1
2∭V

 E 2 dV
(8)

We recognize three of these terms:

power supplied by Ji=∯S

1
2

ReE×H*
⋅ds

          power lost in magnetic conduction

          power lost in electric conduction

(9)

The powers in these cases are all "time averaged." Other than
conduction losses, the only place for the power supplied by the
impressed current to go is to be carried through the surface S
by the fields. Therefore we conclude that

∯S

1
2

ReE×H*
⋅ds=power flow through S (10)

This must be true for any surface  S.  We are led to define the
Poynting vector P as

P=
1
2

Re E×H*  (11)

This represents the power per unit area carried by the field. 

Uniqueness theorem

There are infinite possible solutions to Maxwell's equations -
any physically possible EM fields. In order to have a problem
with a unique solution we must specify additional constraints
on the fields. The uniqueness theorem tells us how to do this.

Consider two sets of fields E1, H1  and E2, H2  that satisfy
Maxwell's  equations  with  the  same  (possibly  complex)
distribution  of  permittivity  and  permeability  and  the  same
impressed current throughout some volume V:

∇×E1=− j  c H1

∇×H1=Ji j  c E1

(12)

and

∇×E2=− j  c H2

∇×H2=Ji  j c E2

(13)
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Subtract the second set of equations from the first set and note
that  ∇×E1−∇×E2=∇× E  where   E=E1−E2 .  We
obtain

∇× E=− j c H

∇×H=  j  c  E
(14)

The impressed current does not appear in these equations. The
difference  fields  satisfy  a  source-free  form  of  Maxwell's
equations.  Applying (8)  to these difference  difference  fields
results in

∯S

1
2

Re E× H*
⋅ds

          1
2
∭V

mH 
2 dv

1
2
∭V

  E
2 dv=0

(15)

If

∯S

1
2

Re E×H*
⋅ds=0 (16)

then we must have

1
2
∭V

m H 
2 dv

1
2
∭V

  E
2 dv=0 (17)

If additionally  ,m  are positive throughout V then we must

have   E= H =0  everywhere.  That  is,  E1=E2  and

H1=H2  throughout V. This will be the case if

 E× H* ⋅ds=0 (18)

at every point of S. Now

∣ E× H* ⋅an∣=∣ E t∣∣ Ht∣ (19)

Therefore, if at every point on the surface S we have E1t =E2t

and/or  H1t=H2t  then  E1=E2  and  H1=H2  throughout the
volume V. This is the uniqueness theorem. We may state it as 

For  given  sources  Ji  and  constitutive  parameters
within a volume V, the fields are uniquely determined
within V if the tangential component of either E or H is
specified at every point of the bounding surface S. 

Note that the assumption of positive   ,m  means that our
proof  only  applies  to  lossy  materials.  We  can  consider  a
lossless  material  to  be  the  limit  of  a  lossy  material  as
 ,m0 .  All  real  materials  have  at  least  some  loss

(possibly extremely small). 

Reciprocity theorem

Suppose two people,  A and B,  have identical  radios.  If  we
know that A has a certain quality reception of B, what can we
say about B's reception of A? The reciprocity theorem tells us
that B will have exactly the same quality reception of A as A
has of B. Obviously this result is very important in two-way
wireless  communication  systems.  The  reciprocity  theorem
applies to (almost) any "two-port network" in which we swap

the locations of transmitter and receiver. 

Let the permittivity and permeability throughout a volume  V
be  c ,c .  Suppose  when the  source  is  J1  the  fields  are

E1, H1 , and when the source is J2  the fields are E2, H2 .
Therefore

∇×Ek=− j  c Hk

∇×Hk=Jk j c E k

(20)

where k is 1 or 2. From Ampere's law we have

E1⋅J2=E1⋅∇×H2− j c E1⋅E2

E2⋅J1=E2⋅∇×H1− j c E2⋅E1

(21)

Subtracting gives

E1⋅J2−E 2⋅J1=E1⋅∇×H2−E 2⋅∇×H1 (22)

Now

∇⋅E1×H2=H2⋅∇×E1−E1⋅∇×H2

=− j c H2⋅H1−E1⋅∇×H2

(23)

and

∇⋅E 2×H1=H1⋅∇×E 2−E2⋅∇×H1

=− j c H1⋅H2−E2⋅∇×H1

(24)

Subtracting the first equation from the second results in

∇⋅ E2×H1−E1×H2 =E1⋅∇×H2−E 2⋅∇×H1 (25)

Using (22) we have

∇⋅ E2×H1−E1×H2=E1⋅J2−E2⋅J1 (26)

The divergence theorem allows us to write

     ∯S  E2×H1−E1×H2 ⋅dS=∭V  E1⋅J2−E2⋅J1dV (27)

This is  one form of the reciprocity theorem. A more useful
form results if we let the surface S be a sphere that expands to
infinity.  If  there  is  at  least  a  small  amount of loss  then the
fields will decay exponentially with increasing radius while the
area of the sphere grows only as the radius squared. Therefore
the surface integral will vanish and we are left with 

∭V
E1⋅J2 dV =∭V

E2⋅J1 dV (28)

To  see  how  this  applies  to  the  “two  radios”  situation  we
mentioned  previously,  suppose  that   J1= I dl a1   r−r1

and  J2= I dl a 2   r−r2  .  This  is  an  idealization  of  two

small  antennas  of  length  dl located  at  positions  r1, r2 ,

pointing  in  directions  a1, a 2  and  both  carrying  current  I.
Doing the integrals gives us

I dl a 2⋅E 1 r2= I dl a 1⋅E 2  r1 (29)

Now a2⋅E1 r2   is the projection of the field due to radio 1,
at the location of radio 2, in the direction of the antenna of
radio 2.   The voltage of the received signal at radio 2 will be
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proportional to this.  We see that the received voltages at the
two radios will be the same.

Duality theorem

Duality refers to the symmetry in Maxwell's equations between
the  electric  and  magnetic  quantities  that  allows them to  be
swapped (with some sign changes) and still read as Maxwell's
equations.  First  consider  the  source-free  case  in  which
Maxwell's equations read

∇×E=− j  H

∇×H=  j  E
(30)

Suppose = f r  and =g r   describe some environment

and you find the solution E1, H1  such that

∇×E1=− j  g rH1

∇×H1=  j  f r E1

(31)

The "dual  problem" would be that in which the permittivity
and permeability functions are swapped, namely

∇×E2=− j  f  rH2

∇×H2=  j  g r E2

(32)

Here E2, H2  would be the solution to this new problem. The
symmetry of Maxwell's equations allow us to immediate write
this solution in terms of our previous solution as

E2=−H1

H2=  E1

(33)

In words, we swap the field vectors and change the sign of the
electric field.

Now consider  the general  case.  We will include a fictitious
magnetic current and write Maxwell's equations as

−∇×E=M j  H

  ∇×H= J j   E
(34)

Now,  swap  the  fields,  currents  and  constitutive  parameters
(switching  electric  for  magnetic  and  magnetic  for  electric).
This produces

−∇×H= J j  E

  ∇×E=M j   H
(35)

These are almost Maxwell's equations, but the negative sign is
not in the right place. However, if we change the signs of  E
and J we have

−∇×H=−J− j  E

−∇×E=M j  H
(36)

which is the same as

−∇×E=M j  H

  ∇×H= J j   E
(37)

and we are back to Maxwell's equations. Here's a summary of

duality.

1. Start with a solution to any EM problem.

2. Swap electric and magnetic quantities: fields, currents
and constitutive parameters.

3. Change the signs of E and J.

4. You have a solution to a new EM problem. 

Volume equivalence theorem

The  idea  of  a  volume  equivalent  current provides  a  very
powerful way to analyze many “scattering” problems. Let the
“incident field” be a solution of Maxwell's equation in source-
free, free space.

∇×E i=− j 0 H i

∇×H i =  j 0 E i

(38)

Now, we introduce  some dielectric  object  described  by the
relative permittivity function r  r ,

∇×E=− j 0 H

∇×H= j 0 0 r  rE
(39)

We are interested in how the object changes the incident field.
We write E=E iE s  and H=H iH s  which expressed the
“total field” as the sum of the incident field and the “scattered
field”  E s , H s . Subtracting the incident field equations from
the total field equations gives us

∇×[ E−E i ]=− j 0[ H−H i]

∇×[ H−H i ]= j 0 0 r  rE− j  0 E i

(40)

Adding and subtracting j 0 E  to the right-hand side of the
second of these equations puts it in the form

j 0 0 r  rE− j  0 E i

         = j 0 0 [ r  r−1 ] E j  0[ E−Ei ]
(41)

Defining the equivalent volume current density as

Jeq = j 0 0[ r  r −1 ]E (42)

we then obtain equations for the scattered field

∇×E s=− j 0 H s

∇×H s=Jeq j 0 E s

(43)

Notice that these correspond to a current Jeq  radiating in free

space. The effects of the object function r  r   are contained
within the equivalent current term. We can immediately write

A s r=
 0

4
∭V

Jeq  r ' 
e− j 0∣r−r '∣

∣r−r '∣
dV ' (44)

and then  E s ,H s  can be derived  from  A s .  This is  only a

formal solution, however, since Jeq  depends on the total field
E and we don't know until we know the scattered field, but we
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don't know the scattered field until we know Jeq . However,
this formulation leads to a very powerful approximation in the
limit  of  a  “weak  scatterer.”  If  ∣r  r −1∣≪1  then  ∣Jeq∣
should be small. It follows that the scattered fields should also
be small. If ∣E s∣≪∣E i∣  then Jeq ≈ j 0 0 [ r  r−1 ]E i  and 

A s r≈ j
0 0

4 
∭V

[ r  r ' −1 ] Ei  r ' 
e− j 0∣r−r '∣

∣r−r '∣
dV '

(45)

depends  only  on  know quantities.  This  is  called  the  Born
approximation.  One  could  carry  this  further  and  use  the
scattered  field from this approximation to  estimate the total
field and therefore obtain a better approximation to Jeq . From

there an improved estimate for A s  could be obtained.
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