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Lecture 2c

Potentials

Introduction

In general solving a vector wave equation is a very difficult
undertaking, and we would like to avoid working with vector
equations  whenever  possible.  In  our  undergraduate  physics
courses we saw that an electrostatic vector field can be derived
from a scalar potential

E=−∇ (1)

This allows us to work out many electrostatics problems  using
scalar equations. For example, we can calculate the potential
as an integral over the distribution of charge:

 r=
1

4 0
∭

q r '
∣r−r '∣

dV ' (2)

If we need the vector field E we can then apply the necessary
differential operator to derive it from the scalar potential. 

When  dealing  with  non-static  fields  we cannot,  in  general,
derive the vector fields from a scalar potential. However, we
will see that we can derive them from a  vector potential that
can be calculated from the current distribution using a integral
relation similar to that above. And there will be special cases
where the vector potential effectively reduces to a scalar field.

Magnetic vector potential

Faraday's law ∇×E=− j H  can be rearranged to give

H=
j


∇×E (3)

This shows that  H is completely determined by  E.  For now,
let's call A= jE / . We then have

H=
1

∇×A (4)

Therefore H can be written as the curl of a vector. This is just
a  restatement  of  Faraday's  law  with  a  redefinition  of  the
electric field times a constant as a new vector  A. But here is
the “trick.” Recall that the curl of the gradient of a scalar field
is identically zero, that is ∇×∇≡0 . Therefore, we can add
the gradient of an arbitrary scalar field into our expression for
A without changing the value of the curl. That is, we can take

A=
j

E∇   (5)

where    is  any scalar field,  and (4) will still be true.  The
scalar field   need not have any physical significance; it can
be anything we want1. It is a mathematical “wiggle term” that,

1 It does have to be twice differentiable so that we can take the
gradient followed by the curl.

hopefully, we can use to simplify our problems. 

The vector  A is called a  vector potential. We will introduce
another  vector  potential  below, so let's be more precise and
call A the magnetic vector potential since the magnetic field is
obtained from it by a differential operation. The scalar    is
often  called  the  scalar  potential,  although it  need  not  have
physical significance. 

The magnetic  vector  potential  is  proportional  to  the
electric field plus a "wiggle term."

Solving for E we have

E=− jA−∇ (6)

The addition of  the    term does not  change the value of
∇×A  since ∇×∇ ≡0 . The curl of A is what has physical

significance through (4). 

The divergence of A is

∇⋅A=
j

∇⋅E∇2

  (7)

E is a physical  quantity so  ∇⋅E  is determined by physics.
However,  we can take  ∇2

  to be an arbitrary function of
position. For example, if we set  ∇2

 r =−q r /0  we can
interpret  qr   as a (fictitious) charge density and   r  as
the  resulting  electrostatic  field.  This  is  simply  Poisson's
equation and we know that it has a solution for any function
qr  , namely (2).

Therefore, we can set the divergence of  A to be an arbitrary
function of position. On the other hand, the electric field E is a
physical quantity fully constrained by physics.  We can think
of the magnetic vector potential  A as a mathematical device,
related to E, but with a degree of freedom that will prove very
useful for simplifying analysis. 

The  curl  of  A is  physically  constrained  but  the
divergence of A is arbitrary. 

In general we have

H=  
1

∇×A

E=
1

j
∇×∇×A− J 

(8)

The second equation is from substituting the first equation into
Ampere's law. In a source-free region these reduce to

H=  
1

∇×A

E=
1

j  
∇×∇×A

(9)

If we take A to have only a z component then we have, for a
source-free region
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H x=   
1

∂
∂ y

A z

H y=−
1

∂
∂ x

A z

H z=0

E x=−
j


∂
∂ x

∂
∂ z

Az

E y=−
j

 
∂
∂ y

∂
∂ z

Az

E z=
j

 [ ∂
2

∂ x2
Az

∂
2

∂ y2
A z]

(10)

Since  H has no  z component we will refer to this as a TMz

field (the magnetic  field is  transverse to the  z direction).  It
turns out that  any field that has  H z≡0  can be expressed in

terms of the scalar field  Az . So, we reduced the problem of

finding the five field components E x ,E y ,E z , H x , H y  to that

of  finding the single  component  A z .  This  is  a  tremendous
simplification for analytical purposes.

Helmholtz theorem

The  ideas  we  have  been  discussing  are  formalized  in  the
Helmholtz  theorem.  The  Helmholtz  theorem  says  that  any
(physically plausible) vector field F can be represented as the
combination of the gradient of a scalar field and the curl of a
vector field. Mathematically we can write

F=−∇∇×A (11)

We know from Poisson's equation of electrostatics that if

∇
2
 r =−q r  (12)

then

r =
1
4
∭ q r ' 

∣r−r '∣
dV ' (13)

One thing this tells us is that any scalar field q can be written
as the Laplacian of another scalar field  , and it even gives
us a formula for computing   from q. 

Now, let F be any vector field. Each of the three components
of F is a scalar field, so we can use our previous result to write
Fx=−∇

2B x  where Bx  is some other scalar field. We can do
likewise for the y and z components of F. In vector notation we
have

F=−∇2 B (14)

This is the vector counterpart to (12). Using a vector identity
we write

−∇2 B=−∇∇⋅B ∇×∇×B (15)

Now, define the scalar and vector fields

=∇⋅B

A=∇×B
(16)

Then

F=−∇∇×A (17)

This  is  the  Helmholtz  theorem.  We  call    the  scalar
potential and A the vector potential. 

What is the advantage of this? Consider  the divergence and
curl of F

  ∇⋅F=−∇ 2

∇×F=∇×∇×A
(18)

This shows that the divergence and curl of a vector field are
independent in the sense that they can be separately specified.
If the curl is fixed (A specified), the divergence can be set to
an arbitrary function (specify  ) and conversely. This will be
quite useful to use later on.

Electric vector potential

In a source-free region ( J=0 ) Ampere's law becomes

∇×H= j E (19)

We can write

E=−
1

∇× jH /  (20)

or

E=−
1

∇×F (21)

where F= jH /  is the electric vector potential. We can add
the gradient of a scalar function to F without changing E

F=
j

H∇e  (22)

Again,  this  gives  us  a  wiggle  term  to  use  for  simplifying
problems. 

Keep  in  mind  that  unlike  the  magnetic  vector  potential
concept, which is always valid, 

the electric vector potential concept is only applicable
in a source-free region. 

When F is used we have

E=−
1

∇×F

H=− j
1

  
∇×∇×F

(23)

In a source-free region with F=a z Fz
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E x=−
1

∂
∂ y

F z

E y=  
1

∂
∂ x

F z

E z=0

H x=−
j

 
∂
∂ x

∂
∂ z

Fz

H y=−
j


∂
∂ y

∂
∂ z

F z

H z=
j

 [ ∂
2

∂ x2 F z
∂2

∂ y2 F z]

(24)

Since E has no z component we will refer to this as a TEz field
(the electric field is transverse to the z direction). Any field in
a source-free region that has E z≡0  can be expressed in terms

of the scalar field  F z . So, we have reduced the problem of

finding the five field components E x ,E y , H x , H y , H z  to that

of finding the single component F z . 

Using a combination of A and F

Although  we  can  fully  specify  both  E and  H using  the
magnetic vector potential A alone, or using the electric vector
potential  F alone  (in  the  case  of  a  source-free  region),  we
sometimes find it useful to use A and F at the same time. This
gives us more degrees of freedom that we can use to simplify
analysis. When using both A and F we have

H= 
1

∇×A− j

1
 

∇×∇×F

E=−
1

∇×F− j

1


∇×∇×A
(25)

As you will show in the homework, an arbitrary plane wave
can be represented using just the Az , F z  components. Just as
any (physically plausible) function of time can be represented
as  a  superposition  of  complex  sinusoids  (inverse  Fourier
transform),  any  (physically  plausible)  electromagnetic  field
can  be  represented  as  a  superposition  of  plane  waves.  It
follows that  any EM field can be represented by specifying
A z ,F z  as functions of position. This is a very powerful fact

for analytic work. 

Hertz vectors

Although we will not  use them, an alternate approach  is to
employ the so-called Hertz vectors  , m  These are related
to the vector potentials by

A= j  (26)

F= j m (27)

You may see these in the literature and in texts. For example,
Ishimaru uses this approach.

Wave equations for A and F

Recall that we started with Faraday's law in our development
of the magnetic vector potential concept. So, Faraday's law is
already "built in" to our analysis. Let's now consider Ampere's
law

∇×H=J jE (28)

Substituting (4) and (6) results in

∇× 1

∇×A=J j− jA−∇  (29)

Remember  that    is  an arbitrary scalar  field,  our "wiggle

term." Let's assume =const . This allows us to write

∇×∇×A= J j− jA−∇  (30)

Using a vector identify for ∇×∇×A  we have

∇ ∇⋅A −∇2 A= J j − j A−∇  (31)

Rearranging gives us

∇
2A+ω2

μ ϵA=−μ J+∇(∇⋅A )+ jωμ ϵ∇ ψ (32)

The "ugliest" term is ∇∇⋅A  . If

jωμϵ ∇ψ=−∇ (∇⋅A) (33)

then this will go away. If both m and e are constants then 

=−
j

 
∇⋅A  (34)

achieves this for us. We have had to assume that both of  ,
are constants, so we are dealing with a simple medium at this
point.

We now have the result, valid for any simple medium,

∇2 A2 A=− J (35)

Compare this to the simple-medium equation we derived for E

∇
2 E2 E= j J

j

∇ ∇⋅J  (36)

Our equation in A is much more useful, in particular because
each  component  of  A depends  only  on  the  corresponding
component of J. For example,

∇2 Az
2 A z=− J z (37)

The  ∇∇⋅J   term in  the  E equation,  on  the  other  hand,
causes each component of E to depend on each component of
J. 

In a source-free simple medium we have

∇2 A 2 A=0

∇
2 F 2 F=0

(38)

The second equation can be derived in a similar manner to the
first. We have the interesting result that in a source-free simple
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medium, E, H, A and F all satisfy the Helmholtz equation.

Relation between A and J

Let's go back to (35) and see if we can derive a solution for A
in terms of J. Let's consider only the z component of (35) and
let J z  be a "point current" at the origin of the form J0 r ,

∇ 2 Az
2 A z=− J0 r (39)

Notice  that  if  =0  then  ∇ 2 Az=− J0  r  which  looks
like Poisson's equation for a point charge at the origin. The
solution would be 

A z=


4
J 0

1
r

(40)

We will now show that for ≠0  the solution is

Az=
μ

4 π
J 0

e− jβr

r
(41)

The  Laplacian  for  a  function  or  r only  (in  spherical
coordinates) is

∇
2 Az=

d 2

dr 2 Az
2
r

d
dr

Az (42)

It  is  left  as  an  exercise  to  show  that  (41)  satisfies
∇ 2 Az

2 A z=0  for  r≠0  .  We  then  need  to  show  that

∇ 2 Az
2 A z  behaves like − J 0 r  in the sense that 

∭V
∇2 Az

2 Az dV=− J 0 (43)

over any volume V containing the origin. Consider a sphere of
radius  r00 .  In  spherical  coordinates  we  have

dV=r 2sin dr d  d  . 

∭V
Az dV=



4
J 0∭V

e− j  r

r
r 2sin dr d  d 

0
(44)

since r00  and the integrand has a factor of r. Therefore the

β
2 Az  term of (43) does not contribute and we must have

∭V
∇2 Az dV=− J 0 (45)

The divergence theorem gives us

∭V
∇2 Az dV=∯S

∇ A z⋅dS (46)

Using ∇A z=ar
d
dr

Az  we obtain

∇A z=
− J 0

4
e− j  r 1 j  r

r2  a r (47)

Then

∯S
∇ Az⋅dS=

− J 0

4
e− j r 01 j  r0

r0
2 4 r 0

2

− J 0

(48)

So, we have shown that 

A z=


4
J 0

e− j  r

r
(49)

is the solution to 

∇ 2 Az
2 A z=− J0 r (50)

Now let J z  be any scalar field. We can write

J z r=∭ J z r '  r−r ' dV (51)

The potential produced by J z r '   r−r '   will be

μ

4π
J z(r ' )

e− j β∣r−r'∣

∣r−r '∣
(52)

Therefore

Az r=


4
∭V

J zr '
e− j ∣r−r'∣

∣r−r '∣
dV ' (53)

We  could  repeat  exactly  the  same  steps  for  the  x and  y
coordinates. The result is the vector equation

A r=


4
∭V

J r ' 
e− j ∣r−r '∣

∣r−r '∣
dV ' (54)

This is a very powerful result. We cannot derive such a simple
relationship between J and either E or H. This tells us that if,
for example, J has only an x component, then A will have only
an x component. This would apply to a wire antenna parallel to
the  x axis.  All six components of  E and  H may be derived
from the single component of A. 
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