
2b.1

Lecture 2b

Constitutive parameters and 
boundary conditions

Permittivity

In this section we are going to use a very simplistic model to
develop  the  concept  of  the  permittivity  of  a  material.  This
development  is  not  based  on  rigorous  atomic physics,  so  it
can't  be  expected  to  rigorously  describe  real  materials.
However  it  will  give  a  plausibility  argument  for  why  the
permittivity of real materials vary, show frequency dependence
and exhibit internal loss. 

In free space Gauss's law is 0∇⋅E=q . Using the divergence
theorem we obtain the integral form

ϵ0∯S
E⋅dS=Qenc=∭V

q dV (1)

Let the surface be a sphere of radius  r and let the charge be
distributed with spherical  symmetry. Then on the surface of
the sphere

E=
Qenc

4πϵ0r 2 âr (2)

where Qenc  is the total charge inside the sphere.

Imagine a point charge Q placed at the origin and embedded in
some material.  The  atoms of  the  material  consist  of  equal
amounts of positive and negative charge. Assume the positive
charge (nucleus) is fixed in place. The electric field due to Q
will tend move these negative "bound" charges. Some of those
charge will cross the surface of the sphere, change the value of
Qenc .

Treating the binding forces within the atom as an equivalent
spring, the displacement l of the negative charge is determined
by the equilibrium between the electric force and the restoring
force

k l=E Qb (3)

where  k is  the "spring constant"  of the atom. Let  N be the
number of atoms per unit volume. Any atom within a distance
l of the sphere's  surface will put  a negative charge  into the
sphere. There are 

N 4 r 2 l=N 4 r2 E Qb/k (4)

such atoms. The total charge within the sphere is therefore

Qenc=Q−Qb N 4 r2 E Qb/k (5)

The electric field amplitude is

E=
Q−Qb N 4π r2 E Qb/k

4 πϵ0 r2

=
Q

4π ϵ0 r2−
Q b

2 N

k ϵ0

E

(6)

Solving for E we have 

E=
Q

401e r
2 a r (7)

where,  in  our  model,  χe=Qb
2 N /k ϵ0  is  the  electric

susceptibility  of the material. It  is dimensionless. The effects
of the bound charges are accounted for by this constant and
our  expression  for  E only  contains  the  "free"  charge  Q
explicitly. 

We see that  when the susceptibility is non-zero,  the electric
field is weakened relative to the value it would have in free
space. This is the  dielectric effect. We are led to define the
permittivity of the material as

=01e =0 r (8)

The constant r=1e  is called the dielectric constant or the
relative permittivity. It is dimensionless. In this simple model,
different  materials  will  have  different  permittivities  if  they
have different parameters Qb ,N , k .

If the electric flux density is given by D= E  then 

D=
Q

4 r 2 a r (9)

This is the same result we would get for a charge  Q in free
space.  By allowing the  permittivity to  be  a  function  of  the
material, that is, by allowing the relation between D and E to
vary from material to material, we are freed from having to
explicitly account  for  bound charges.  We can write  Gauss's
law  as  ∇⋅D=q  where  q refers  only  to  free  charge  and

D= E .  The  constant    accounts for  the effect  of  bound
charges. 

Frequency dependence

Our previous model was a static one. If the field is oscillating
then any displaced charges will be oscillating also. Let's see
what effect this might have. Let the electric field and charge
displacement be functions of time  E t  , l t  . In addition to
the spring force  k l t   there will be the inertial force  ma or

m d 2 l t /dt2  where m is the mass of the charge. There may
also be a "friction" force proportional to velocity   vt   or

 d l t /dt . Therefore we have the equation
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2b.2

m
d 2

dt2 l (t )+α
d
dt

l( t )+k l( t )=Qb E (t ) (10)

Assume all time dependence is given by e j  t  and let l and E
be phasors. Then

−ω
2 ml+ jωα l+k l=Q b E (11)

Solving for l we have

l=
Qb E

k [ (1−ω2
/ω0

2
)+ jω/ωd ]

(12)

where ω0
2
=k /m  and ωd=k /α . Comparing this to the static

result  l=E Qb /k  suggests that the susceptibility would be a
function of frequency given by

χe=
χe0

(1−ω
2
/ω0

2
)+ jω/ωd

(13)

where e0=Qb
2 N /k 0  is the static value. Multiplying by the

conjugate of the denominator gives us

χe=χe0

(1−ω
2
/ω0

2
)− jω /ωd

(1−ω2
/ω0

2
)
2
+(ω/ωd)

2 (14)

This shows that e  should be in general complex and  have a

negative  imaginary  part.  At  =0 ,  e  becomes  purely
imaginary.  This  is  an  example  of  a  "resonance"  frequency.
Near a resonance frequency the material will strongly absorb
power from the field. 

Recall  that  the  dot  product  of  force  and  velocity gives  the
power transferred to a particle. Force is proportional to E and
velocity is the time derivative of l, or j l  in phasor notation.

Therefore 1 /2Re { j l E }  is proportional to the time average
power transferred from the field to the charge. Taking E to be
real, if l is real then the power is zero. From (12) we see that l
will have an imaginary part only if the  d  term is present.

This is the case if   is non-zero. Recall from undergraduate
physics  that  a  spring  dissipates  energy  when  it  has  a
"damping" term of this form. We see that  e  is complex if
there  is  an  internal  loss  ("damping")  mechanism  in  the
material.

If the susceptibility is complex, the same will be true for the
permittivity  =01e  .  When we want to emphasize the
complex  nature  of  the  permittivity  we  will  often  use  the
notation

ϵc=ϵ '− j ϵ' ' (15)

As  we've  seen  in  a  previous  lecture,  conductivity  can  be
represented by  ϵ' '=σ/ω . Whether  ϵ ' '  is due to electrical
conductivity or  loss  mechanisms within atoms (the "friction
force" term) it will result in a "lossy" material in which power
is  transferred  from  the  field  to  the  material  (typically
manifesting itself as heat).  This can useful, as in microwave
heating, or a problem, as in absorption losses in fiber optics.

We  mentioned  that  our  analysis  is  not  to  be  considered
rigorous. However, real materials do more-or-less display the
type  of  behavior  we have  sketched  out.  The  permittivity is
generally a function of frequency and displays at some level a
loss mechanism, that is, the permittivity is complex. Typically,
however, there are several resonance frequencies. 

Permeability

The  atoms in  certain  materials,  most  notably  ferromagnetic
materials,  behave  as  though  they  have  a  net  circulation  of
current that creates a small magnetic field. In an unmagnetized
state these numerous magnetic dipoles are randomly oriented
and  the  resulting  net  magnetic  field  is  zero.  If  an  external
magnetic  field is  applied,  however,  the dipoles  will  tend to
align with it thereby increasing the magnetic field.

Consider the situation illustrated above. Here I b  represents a

"bound" current moving around a loop of radius ab  within an
atom, and I is an external current in a loop of radius a. In your
undergraduate EM course you worked out H=I /2a   as the
magnetic field produced by  I at the center of the loop. From
F=Q v×B  the force on the loop tends to cause its magnetic

field  H b= I b/2a b  to  align  with  H .  The  total  magnetic

field at the origin is then HHb  and B=0HHb . 

More realistically there are numerous bound currents, and the
magnetic  field  H tends to  cause these to  more-or-less  align
with H. The stronger H is the more they align. The net result is
that  the  total  Hb  increases  with  increasing  H.  We  write
Hb=χmH  where m  is the magnetic susceptibility. We then

have B=01mH= H  where  the  permeability  of  the
medium is given by

=01m=0 r (16)

The advantage of this point of view is that H is directly related
to "free"  currents  while  the  effects  of  "bound"  currents  are
accounted for by  .

If the field H is oscillating with frequency w, then generally

μc=μ '− jμ ' ' (17)

and the permeability is complex and a function of frequency.
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While  the  great  majority of  materials  show some dielectric
effect, magnetic effects (permeability)  are typically significant
only for ferromagnetic materials such as iron and cobalt and
some rare-earth elements. 

Types of media

Simple media

In  a  simple  medium   ,  are  (possibly  complex)  scalar

constants. If both  ,  are real then the medium is lossless. If
either are complex then the medium is  lossy. We will mostly
be concerned with simple media in this course. 

Dispersive media

If either of   ,  are a functions of frequency (true at some
level  for  all  materials)  then  the  medium is  dispersive.  The
time-harmonic  (phasor)  approach  we  are  using  easily
accommodates  dispersion.  We  will  examine  the  effects  of
dispersion in a later lecture. 

Inhomogeneous media

If  = r   and/or  =  r  then  the  medium  is
inhomogeneous.  Otherwise  it  is  homogeneous.  A  simple
medium is homogeneous, but a homogeneous medium is not
necessarily simple – it  might be anisotropic,  for example.  If
inhomogeneities are piece-wise constant it is easier to analyze
a problem as  a  collection of simple media with appropriate
boundary conditions.  This  is  the approach  we will  take for
most of this course. If  the inhomogeneities are described by
continuous functions then the problem is generally much more
difficult. We will briefly consider the simplest case of a one-
dimensional inhomogeneous medium in a future lecture.

Anisotropic media

We have seen how the permittivity of a material is related to
the displacement of bound charges within it. In an anisotropic
medium  charges  are  more  easily  displaced  in  certain
directions. This means that the permittivity can be different for
different directions of  E, i.e., it is polarization dependent. In
such  media  D and  E are  not  necessarily  parallel  and  the
permittivity is described by a three-by-three matrix 

=
xx xy xz

 yx yy yz

zx zy zz
 (18)

so that

Dx=xx E xxy E yxz E z

D y=yx E xyy E yyz E z

Dz=zx E xzy E yzz Ez

(19)

and each component of D depends on all the components of E.

Anisotropic materials have important applications. Anisotropic

permittivity is  particularly useful  at  optical  frequencies  with
LCD displays  being  a  prime  example.  The  Yariv  and  Yeh
reference is a good source for more information. 

The permeability could also be anisotropic in which case  
would  be  a  three-by-three  matrix.  Anisotropic  magnetic
materials have important applications in radio circuits such as
"RF circulators" that allow wireless communication systems to
separate transmitted and received signals present in a common
antenna.

Non-linear media

In a non-linear medium the relations between D and E and/or
between  B and  H depend on the field strength. Equivalently
the permittivity and/or permeability are functions of the fields
=E  ,  = H  . In a non-linear system the principle of

superposition does not apply. If a linear material is driven with
a  certain  frequency  its  response  is  at  the  same  frequency,
hence the power of the phasor method. An interesting effect of
a non-linear material is that it can create field components at
frequencies other than the driving frequency. 

Boundary conditions

At an interface between two simple media we need to consider
the  boundary  conditions on  the  field  vectors.  Consider  the
illustration below.

Here  an  is normal to the interface between medium 1 and

medium 2 and at  is any unit vector tangent to the interface.

Calculating  ∮E⋅dl  around the very small rectangular loop

and letting h 0 , we have ∮E⋅dl=w E2⋅at−w E1⋅at . Since

∮E⋅dl=− j ∬S
 H⋅dS  and  the  area  of  of  the

rectangular surface is zero as h 0 , we have, provided H is
finite, E2⋅at=E1⋅a t . This is true for any tangent vector at .
Therefore the tangential components of E are the same in the
two media. 

We also have

∮H⋅dl=∬S
J⋅dS j∬S

E⋅dS (20)

So,  provided  E and  J are  finite,  H2⋅at=H1⋅at .
Summarizing: 
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E1t=E2t

H1t=H2t

(21)

The tangential components of E and H are continuous across a
boundary. This can also be expressed as

an×E 1=a n×E 2

an×H1=a n×H2

(22)

Now consider  a  cylinder  of  height  h 0  as  shown below.

From ∇⋅H =0  we have ∯ H ⋅ds=0 . This reduces to

1 H1⋅an=2 H 2⋅a n .  From  ∇⋅E=q  we  have

∯E ⋅ds=Q  where Q is the charge within the cylinder. If

q is  finite  then  Q0  as  h 0  and  we  have

1 E1⋅an=2 E2⋅an . 

Summarizing:

a n⋅1 E1= an⋅2 E2

a n⋅1 H1= an⋅ 2 H2
(23)

The  normal  components  of  E  and   H  are  continuous
across a boundary.  

Special case of a PEC

In  deriving  boundary  conditions  we  have  assumed  that  all
parameters and field quantities are finite. An exception would
be the ideal  model of a  perfect  electric conductor (PEC) in
which ∞  and  J=E  could be infinite even for a finite
E. Suppose that in the previous Figures medium 2 is a PEC.
E 2  must be zero or else infinite current would flow. From

Faraday's  law we have that  H must be zero also.  Therefore
E1t=0  at the boundary. The same cannot be said for  H1t ,

however, because ∬S
J⋅dS  will not necessarily go to zero as

h 0 , since  ∞ . In the homework we will consider the
problem starting with medium 2 having a finite conductivity
and  then  letting  ∞ .  We  will  find  that  the  current  in
medium 2  is  localized  on  its  surface  resulting in a  surface
current  density J s  having  units  of  A /m .  The  boundary
conditions when medium 2 is PEC are

       E1t=0

a n×H1t=J s

(24)

Similarly, at the surface of a PEC q may become infinite (finite
amount  of  charge  in  a  region  of  zero  thickness)  and

∯E ⋅ds=Q  can be finite even as the surface shrinks to
zero height. The result is

a n⋅1 E1=qs

an⋅ 1 H1=0
(25)

where q s  is the surface charge density in C /m2 . In practice

we will see that we can use E1t=0  as the boundary condition

and  a n×H1t=J s  then  allows  us  to  compute  the  surface
current on the PEC. 
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