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Lecture 2a

Field vectors and Maxwell's equations

Electric charge and the electric field

Electromagnetics is concerned with the interaction of electric
charges at rest and in motion. Maxwell described the classic
demonstration of electrical phenomena as follows:

"Let a piece of glass and a piece of resin ... be rubbed
together ... they will now attract each other."

Moreover, if we do the same with a second piece of glass and
resin,

"... two pieces of glass repel each other ... each piece of
glass attracts each piece of resin .. two pieces of resin
repel each other."

Unlike the gravitational force, which is always attractive, the
electric force can be attractive or repulsive.  This shows that
there are two types of electric charge. Like charges repel and
different charges attract.

"It is the established practice of men of science to call
the  vitreous  [glass]  electrification  positive,  and  the
resinous  [resin]  electrification  negative  ...  [this  is]  a
matter of arbitrary convention ..."

We now know that positive electric charge resides in protons
and  negative  electric  charge  resides  in  electrons.  These
charges are equal in magnitude and opposite in sign. We refer
to  this  magnitude  as  the  elementary  charge.  It  is  usually
denoted by e  (which is, unfortunately, easily confused with the
e of e x ). The unit of electric charge is the coulomb (C). One
coulomb corresponds to 6.24150962915265⋅1018  elementary
charges.  If an object has a net positive charge then there are
fewer electrons than protons. If  it has a net negative charge
then there are more electrons than protons.

If  a  charge  Q is  placed  at  rest  at  some  point  P and  it
experiences a force  F, then the electric field at the point  P is
defined via the equation

F=Q E (1)

The electric field therefore has units of force per charge N /C
.  We  can  write  1 Nm /Cm=1V /m  where  one  volt is

1 V=1J /C . The electric field is almost always expressed in
units of volts per meter. 

Coulomb's experiment demonstrated that the magnitude of the
force between two charges Q1, Q2  in free space is given by 

F=
Q 1Q 2

40 r 2 (2)

where  r is  the distance  between the charges.  Here  0  is  a
constant  called  the  permittivity of  free  space.  The  units  of
permittivity are  C2 /Nm2=C2 /Jm .  Since  1J=1 VC  this  is

C /Vm . Defining the derived unit  farad as  1F=1C/V , the
units  of  permittivity  are  F /m .  The  free-space  value  is
ϵ0=8.8542⋅10−12 F/m . 

Coulomb's experiment shows that  the electric  field due to a
charge Q at the origin is (expressed in spherical coordinates)

E=
Q

4πϵ0r 2 âr (3)

It is convenient to define the electric flux density in free space
as D=0 E  then

D=
Q

4 r 2 a r (4)

There is a more direct relationship between D and Q since the
constant  0  is not present. The units of electric flux density

are  C /m2=As/m2 .  Using  the  divergence  theorem,  the
relation between D and Q can expressed as

 ∇⋅D=q (5)

where  q=dQ/dV  is the volume charge density.  This is the
differential form of Gauss's law. It is one of the four Maxwell's
equations.

Electric current and the magnetic field

Another type of force acts on charges only when they are in
motion. If a charge Q has velocity v and experiences a force F,
then the magnetic flux density B is defined via the equation

F=Q v×B (6)

The  units  of  B are  Ns /Cm  or  Vs /m2 .  If  we define  the
derived unit weber (Wb) as 1Wb=1Vs , then the units of B
are Wb /m2 . 

We refer to moving charges as electric current. One ampere of
current  corresponds  to  one  coulomb  of  charge  per  second
flowing  through  a  reference  surface.  The  experiments  of
Ampere showed that a current produces a magnetic field which
in turn produces a force on other currents. In fact the modern
definition of the ampere is

The  ampere  is  that  constant  current  which,  if
maintained  in  two  straight  parallel  conductors  of
infinite length, of negligible circular cross section, and
placed  1  meter  apart  in  vacuum,  would  produce
between  these  conductors  a  force  equal  to  2  x  10-7

newton per meter of length.

(http://physics.nist.gov/cuu/Units/ampere.html.)  The  coulomb
is  then defined  as  1  ampere  second,  that  is,  the  amount of
charge flowing in one second through a conductor carrying a
current of one ampere. A point of interest is that it has been
proposed  that  the  coulomb  be  defined as  exactly
6.24150962915265⋅1018  elementary charges.  This,  together

with the definition of the ampere,  the meter and the second
would fix the value of  the kilogram as  a  derived  unit.  The
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kilogram would no longer have to be defined as the mass of a
particular chunk of metal siting in Paris.

Ampere's experiment showed the following. If a wire carries a
current I along the z axis, it creates a magnetic flux density in
free space (expressed in cylindrical coordinates) of

B=
0 I

2 r
a
 (7)

Here 0  is a constant called the permeability of free space. It

has  units  of  Wb /Am .  Defining  the  derived  unit  henry as

1H=1Wb /A , the units of permeability are H /m . The free-

space value is 0=4⋅10−7 H/m . 

It is convenient to define the magnetic field in free space H as
H=1 /0B  (we usually write this as B=0 H ).Then 

H=
I

2 r
a (8)

There is a more direct relationship between I and H since the
constant 0  is not present. The units of H are A /m .  Using
Stoke's theorem the relation between I and H can be expressed
as 

∇×H=J (9)

where J=a J dI /dS  is the electric current density. It has units

of A /m2 . Here dI is the current flowing through a surface of

area  dS normal  to  a J ,  the  unit  vector  in  the  direction  of
charge  velocity.  This  is  the  (static)  differential  form   of
Ampere's law. It is the basic equation of magnetostatics. 

Lorentz force law

If both electric and magnetic forces act on a charge, we have

F=Q Ev×B (10)

This  is  called the  Lorentz force law.  We can take it  as the
operational  definition  of  the electric  and  magnetic  fields.  It
shows how the fields manifest themselves through forces on
charges.  Maxwell's  equations  tell  us  what  kinds  of  field
distributions are possible,  how they interact  with each other
and how charges at rest or in motion create fields. 

The fact  that  we have two different  vectors  associated  with
each of the electric and magnetic fields can be confusing. Let's
review this. The vectors  E and  B are usually considered the
fundamental field vectors and are most closely related to the
way fields exert forces on charges and currents. The vectors D
and H are usually considered auxiliary vectors. They are most
closely  related  to  the  way  in  which  charges  and  currents
produce fields. 

In free space there is nothing physically profound about this.
For example, D and E can be considered as two versions of the
same field vector.  The difference in magnitude and units is
simply due to the way we define charge,  current and force.

Indeed we could redefine the unit of charge so that Coulomb's
law read F=Q1 Q2/ r

2 . 

The situation will become more complex in materials. If  we
keep track of all charges and currents, including those "bound"
in the atoms that make up the material, then we can continue to
use  D=0 E  and  B=0 H .  However,  this  is  a  nearly
impossible task. Instead, it is much easier to keep track only of
"free charge"  and "free  current,"  those charges  and currents
that are not bound within atoms, and to incorporate the effects
of  "bound  charge"  and  "bound  current"  into  the  relations
between D,E and B,H. This will lead to expressions D=E

and  B=H  where   ,  are now functions of the material.
We will consider this in more detail in a future lecture.

Maxwell's equations

Faraday's law

Electrostatic fields are conservative. The total work done on a
charge in moving around a closed loop is zero, or ∮E⋅dl=0 .
In differential form

∇×E=0 (11)

(Conservative fields are "irrotational.") 

The  experiments  of  Faraday  showed  that  a  time-changing
magnetic field produces an electric field that is generally not
conservative. In fact the time-domain version of Faraday's law
states

∇×E=−∂ t B (12)

In general ∮E⋅dl≠0  and net work can be done on a charge
around a closed loop. This is the basis of, among other things,
most electric power generation. In phasor notation we have

∇×E=− j B (13)

Using B=H  this becomes

∇×E=− j H (14)

This  is  the  differential  form of  Faraday's  law that  we will
primarily use.  Using Stoke's  theorem we obtain the integral
form

∮L
E⋅dl=− j ∬S

H ⋅ds (15)

If we take the divergence of both sides of the differential form
and use ∇⋅∇×E =0  we find

∇⋅H=0 (16)

This is usually expressed as ∇⋅B=0  and is considered one of
the  four  Maxwell's  equations.  However,  it  is  implicit  in
Faraday's law and we will not make much use of it directly. By
analogy with ∇⋅D=q  we see that magnetic charge does not
exist.
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Ampere's law

Ampere's law for static fields is

∇×H=J (17)

Since ∇⋅∇×H=0  this requires ∇⋅J=0 . By the divergence
theorem the total current flowing through any closed surface
would be zero. This is true in the static case, but in general
there is no reason we cannot have a net current flow across a
closed  surface  for  some  finite  period  of  time.  Maxwell
modified Ampere's law to apply to the time-varying case by
adding a "displacement current" term ∂D /∂ t  to get

∇×H=J+ ∂
∂t

D (18)

In the phasor domain this becomes

∇×H=J+ jωD (19)

Using D= E  we obtain

∇×H=J+ jωϵE (20)

This is the form of Ampere's law we will most often employ.
Using Stoke's theorem we obtain the integral form

∮L
H⋅dl=∬S

J⋅ds+ jω∬S
(ϵE )⋅ds (21)

Since ∇⋅∇×H =0 , taking the divergence of Ampere's law
results in

∇⋅J=− j∇⋅E (22)

From  the  divergence  theorem,  ∇⋅J dV  is  the  net  current
flowing  out  of  the  infinitesimal  volume  dV.  If  charge  is
conserved,  then  charge  leaving  the  volume will  result  in  a
decrease in the charge remaining in the volume. Let the charge
within the  volume be  q dV  where  q is  the  volume charge
density. Then the conservation of charge gives ∇⋅J=−dq /dt
or  ∇⋅J=− jq  in  the  phasor  domain.  We  see  that
Maxwell's modified version of Ampere's law together with the
conservation of charge requires

− jq=∇⋅J=− j∇⋅E (23)

and therefore

∇⋅E =q (24)

This is the differential form of Gauss's law. Thus Gauss's law
in  implicit  in  Ampere's  law.  A  useful  way  to  restate  the
conservation of charge is

q=
j

∇⋅J (25)

Here then are the form of Maxwell's equations that  we will
employ in this course:

∇×E=− jH

∇×H=J jE
(26)

The two divergence equations ∇⋅H=0  and ∇⋅E =q
are implicitly contained within these curl relations. 

Electric current and "magnetic current"

It is often quite convenient to consider the current density as
composed  of  two  contributions:  impressed  current and
conduction current. We write

J=JiJc (27)

We think of impressed current as that which is forced to have a
certain value regardless of the fields and is therefore known a
priori. An example would be the current that is forced to flow
in a wire antenna. Conduction current is that which flows in
response  to  the  fields.  For  linear  materials  the  conduction
current is given by the differential form of Ohm's law:

Jc= E (28)

Here    is  the  conductivity of  the material.  It  has  units of

A /Vm  or S /m  where the siemen is defined as 1S=1A /V .

Ampere's law becomes

∇×H=J i E jE (29)

We can use the following bookkeeping notation

 E j E= j − j


E

= jc E

(30)

where the complex permittivity is c=− j / . We can use
either  of  the  following  notations  to  represent  complex
permittivity

c= '− j  ' '=− j/ (31)

In practice the dielectric properties of a material are specified
by giving  ' ,' '  at various frequencies. We can then define
the effective conductivity to be

= ' ' (32)

There  need  not  be  any  connection  between  this  effective
conductivity and the DC conductivity of the material. 

Likewise,  the  permeability  can  have  an  imaginary part.  By
analogy with permittivity,  we can treat  this as an equivalent
"magnetic conductivity"

 c= '− j  ' '=− j m / (33)

even  though  there  is  no  such  thing  as  a  DC  magnetic
conductivity because there is no such thing as magnetic charge
and magnetic current. Instead,  ' '  is due to loss mechanisms
within  the  atomic  structure  of  a  material.  Nonetheless,  the
effect  is  the  same  as  that  which  would  be  produced  by  a
(fictitious)  magnetic current. We will call the magnetic current
M and write

M=m H= ' ' H (34)
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Faraday's law can then be written. 

∇×E=−M− j H (35)

In  a  future  lecture  we will  consider  ways  to  determine  the
 ' ,' '  and  ' , ' '  values of a material from reflection and

transmission measurements.

Current and power

Current  consists  of  charges  in  motion.  If  the  charges  are
subjected a force then that force does work on the charges as
they move through some displacement. 

Current  density  J has  units  of  A/ m2 .  Let  q be  a  charge
density ( C /m 3 )  and  v be a  velocity ( m /s ).  Then  qv has
units of C /sm 2  or A/ m2 . Indeed J= q v  - current density
is charge density times charge velocity. 

Now consider a charge Q=q dV  moving with velocity v and
let it be acted on by an electric field E (v and E are phasors).
This creates a force QE. The dot product of force and velocity
is work done per unit time, or power.  The time-average power
is  therefore  W=1 / 2  q dV Re E⋅v∗  .  Since  J= q v ,  the
time-average power density w=dW / dV  ( W /m3 ) is

w= 1
2

Re E⋅J∗  (36)

This is the power transferred from the field to the current per
unit volume. If this is negative then the current is doing work
on the field. This is the case in a transmitting antenna. If  J is
given by Ohm's law then

w= 1
2
 E 2 (37)

This is never negative, so power is always lost from the field
in a conductive medium. 

Wave Equations

Maxwell's  equations  give  a  complete  description  of
electromagnetic phenomena. They are, however, coupled first-
order partial differential equations in the two vector unknowns
E and H. When pursuing analytic solutions it is typically more
useful to derive a single equation in a single unknown, say E.
We will refer to an equation of this sort as a wave equation. 

Let's start with Faraday's law

∇×E=− j H (38)

We would like to express the H factor in terms of E. What we
have available is Ampere's law that gives ∇×H  in terms of

E and J.  If we assume   is a constant then we can take the
curl of both sides of Faraday's law to get

∇×∇×E=− jωμ∇×H (39)

(If    was not constant there would be a  ∇×H  term to

deal with.) Now we can substitute for ∇×H  from Ampere's

law to get

∇×∇×E=− jωμ (J+ jωϵE ) (40)

Rearranging a bit, we have

−∇×∇×E+ω2
μ ϵE= jωμ J (41)

This  is  a  wave  equation  for  E when  =const  but    is
arbitrary. The source (forcing) function is proportional to the
current density  J.  It  is not  a very useful equation, however,
because  ∇×∇×E  is such a complicated differential form.
So, let's try to simplify this.

Since ∇×∇×E=∇ ∇⋅E−∇2 E  we can write 

∇
2E+ω2

μ ϵE= jωμ J+∇(∇⋅E) (42)

This looks a bit better. Let's try to simplify some more. If the
medium is simple (both  ,  are constant) then

∇⋅E =∇⋅E=q (43)

Therefore

∇∇⋅E=
1

∇ q (44)

and

∇
2 E2 E= j J

1

∇ q (45)

where we have defined the constant

2=2  (46)

Finally, using q=
j

∇⋅J  we can write

∇
2 E2 E= j J

j

∇ ∇⋅J  (47)

This  is  a  wave equation  for  E in  any simple  medium with
arbitrary current density J. It still is not a very useful equation
due to the ∇ ∇⋅J   term. 

If the medium is source-free ( J=0 ) then the right-hand side
is zero and we are left with

∇2 E2 E=0 (48)

This  is  the  (homogeneous)  Helmholtz  equation.  By  similar
steps one can show that in a source-free simple medium H also
satisfies the Helmholtz equation.

∇ 2 H2 H=0 (49)

The Helmholtz equation is reasonably tractable and will be the
basis of most of our analysis in this course. 

References

1. Maxwell, J. C.,  A Treatise on Electricity and Magnetism,
Dover, 1954 (reprint of 1891 edition), ISBN 0-486-60636-

EE518: Advanced Electromagnetic Theory Scott Hudson 2015-02-02



2a.5

8 (vol. 1) and 0-486-60637-6 (vol. 2).

2. Balanis,  C.  A.,  Advanced Engineering  Electromagnetics,
Wiley, 1989, ISBN 0-471-62194-3.

Appendix: units

Fundamental  units:  meter  (m),  kilogram  (kg),  second  (s),
ampere (A).

newton (force) 1 N=1kg m/s2

joule (energy) 1J=1 Nm

watt (power 1W=1 J /s

coulomb (charge) 1C=1 As

volt (electric potential) 1 V=1J /C

farad (capacitance) 1F=1C /V

weber (magnetic flux) 1Wb=1Vs

henry (inductance) 1H=1Wb /A

ohm (resistance) 1=1 A /V

siemen (conductivity) 1S=1V /A

Appendix: constants

Elementary charge

e=1.602⋅10−19 C

Permeability of free space

0≡4⋅10−7 H/m

Speed of light in free space (exact by definition)

c≡299,792,458 m/s

Permittivity of free space

0≡
1

0 c2=8.8542⋅10−12 F/m
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