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Lecture 1d

Boundary-value problems

Introduction

The material in this lecture might appear a bit abstract,  and
many electromagnetic texts don't emphasize it. However, it is
very fundamental in understanding the nature of the solutions
to Maxwell's equations that we will derive.

We  will  see  that  electromagnetic  systems  are  typically
described by a partial differential equation (PDE). Solving a
PDE is not easy. The only systematic approach we will have is
to try a separation of variables where we hope that a solution
can  be  found  in  the  factored  form
E (u , v ,w)= f (u)g (v)h(w) . If  successful this turns a PDE

of three variables into three ODEs that can then be solved by
the methods we have discussed previously. 

Here's  the issue.  Say our “trick” works and we find one or
more solutions of the form  f (u) g (v)h (w) ,  which we will
call a mode of the EM system. This is great as far as it goes,
but these are just a subset of an infinite number of possible
solutions.  Many  of  those  solutions  can't  be  written  as

f u  g  vh w .  How  can  we  “get  at”  the  most  general
solution to Maxwell's equations in our particular geometry?

Sturm-Liouville theory provides the answer. Using it we will
be able to show that any solution of the systems we will study
can  be  represented  as  a  linear  combination  of  the  factored
modes  we  were  fortunate  to  be  able  to  find.  The  idea  is
analogous to Fourier series which you have seen allows any
function to be represented as a series of variations of one type
of fundamental function (sinusoids).  We will need to extend
this  concept  to  non-sinusoidal  functions  and  to  three
dimensions. 

Boundary value problems

In  our review of differential  equation theory we have noted
that  we  can  always  find  a  unique  solution  to  a  2nd order
HLODE  satisfying  the  two  initial  conditions  y x0=y 0 ,

y' x0= y '0 . In EM applications, however, we typically have
boundary  conditions  of  the  form  yx1=y1  , yx2 = y2

rather  than  initial  conditions.  Initial  value  problems always
have a unique solution. Boundary value problems may or may
not have a solution. Typically solutions exist only when certain
parameters of the equation take on one of a set of values.

As an example, let's consider a simple boundary value problem
consisting of the 2nd order HLODE

y' '+Ω
2 y=0 (1)

with the boundary conditions

y(0)=y (1)=0 (2)

The general solution to the HLODE is

y x=a1 cos  x a 2sin x (3)

Since  cos0 =1 ,  the  boundary  condition  (BC)  y0=0
requires a1=0 , and

y x=a 2sin x (4)

The second BC then requires

a2 sin =0=k   , k=1,2,3, (5)

Of course we could also have taken a2=0  but this gives the

trivial  solution  yx≡0 .  We  see  that  our  boundary  value
problem has a solution only when the parameter   takes on

one  of  the  values  eigenvalues  ,2 ,3 ,  giving
eigenfunction solutions of the form

yx=aksink x (6)

where ak  is some constant. In EM problems solutions of this
type will represent  modes of the EM field in some structure.
Now, consider  a  sum of all  of our "modes"  for  the current
problem:

f ( x)=∑
k=1

∞

ak sin (k π x) (7)

This  is  a  Fourier  series that  can  be  used  to  represent  any
function  f  x   over  the interval  0<x<1 .  The coefficients
are given by

a k=2∫
0

1

f (x)sin (k π x)dx (8)

As you may recall from undergraduate courses, the usefulness
of Fourier series rests on two properties. First, the functions
sin k x  are  orthogonal to  each  other.  This  allows us to

calculate  the  coefficients  via  an  integral  of  the  form  (8).
Second,  the  functions  sin k x  are  complete over  the
interval  0,1  , meaning that the Fourier series can represent
any  continuous function f  x   over that interval. 

Of course,  most boundary value problems will not  have the
functions sink x  as solutions, so the modes we obtain will
not form a basis for a Fourier series. However, we will see that
the modes of  an arbitrary boundary value problem typically
form a complete, orthogonal set of functions that can be used
as the basis of a generalized Fourier series that can be just as
useful as a "regular" Fourier series. 

Sturm-Liouville problem

Consider the following 2nd order HLODE

[u  x y' ] '[ w xv  x] y=0 (9)

over  the  interval  x1≤x≤x2  with  homogeneous  boundary
conditions

a1 y  x1b1 y '  x1=0   or  u  x1=0
a 2 y x2b2 y '  x2=0   or  u  x1=0

(10)
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Here   is a parameter to be determined in the solution of the
problem. We assume that  u  x , v x ,w x  and  u' ( x)  are
real  and continuous over the interval.  This is the called the
Sturm-Liouville problem. Expanding the Sturm-Liouville form
and dividing through by u  x  we obtain

y' '
u'  x
u  x

y '
[v xw  x]

u  x
y=0 (11)

This has the standard form of a 2nd order  HLODE

y' ' p x y 'q x  y=0 (12)

with

p  x=
u' x 
u  x

q  x=
w  xv x 

u  x

(13)

We can invert these relations to obtain

            u  x=u 0 e
∫
0

x

p  xdx

v xw  x=q  xu  x
(14)

These equations allows us to put any 2nd order  HLODE into
the Sturm-Liouville form. For example, consider the Legendre
equation 

y' '−
2x

1−x2 y'
nn1 

1−x2 y=0 (15)

with −1≤x≤1 . By inspection we can identify ux =1−x2 ,

u'x=−2 x , vx=0 , wx=1  and =nn1  .

In  general,  solutions  to  the  boundary  value  problem  are
possible only for certain values of the parameter   which we
call the eigenvalues of the problem.

=0,1, (16)

Let's call yk x  the solution corresponding to =k . These
are the eigenfunctions of the problem.

Orthogonality property

Consider  any two of  the eigenfunctions,  ym x, ynx .  We
have

[u ym ' ]'v ym=−m w ym

[u yn ' ]'v yn=−n w yn

(17)

Multiplying the first equation by yn , the second by ym  and
subtracting we get

yn[u ym ' ]'− ym [u yn ' ]'=n−m w ym y n (18)

We are going to integrate both sides. Let's work on the left
side first. Recall “integration by parts”

∫a db=ab−∫bda (19)

Taking a=yn  and db=[u ym ' ]' dx , we have

∫ yn[u ym ' ]' dx= yn[u ym ' ]−∫u ym ' yn ' dx (20)

Likewise we have

∫ ym [u yn ' ]' dx= ym[u yn ' ]−∫u yn ' ym ' dx (21)

Subtracting  (21)  from  (20)  and  putting  in  the  limits  of
integration gives us 

    ∫x1

x2

y n[u ym ' ] '− ym [u y n ' ] ' dx=u [ yn ym '−ym yn ' ]∣x1

x2 (22)

At  x=x1  the right-hand side is zero. This is because  either

u  x1=0  or using the BC's we have

ynx1  ym x1'= ynx1 [−a1
b1

ymx1 ]
=−

a1
b1

yn x1 ymx1 

(23)

We get the same result for ym x1 yn x1' . Therefore

ynx1  ym ' x1− ym x1 yn ' x1=0 (24)

The same is true at x2 . Therefore 

u [ yn ym '− ym yn ' ]∣x1
x2=0 (25)

so

∫x1

x2

y n[u ym ' ] '− ym [u y n ' ] ' dx=0 (26)

and it follows that

n−m ∫
x1

x
2

wx ymx ynxdx=0 (27)

Since  the  two  eigenfunctions  correspond  to  different
eigenvalues we have n−m≠0  and finally

∫
x1

x
2

wx ym x ynxdx=0 (28)

This shows that ym x, ynx  are orthogonal over the interval
[x1, x2 ]  with weighting function wx .

A somewhat similar type of argument shows that if w  x≥0

over  the  interval  [x1, x2 ]  then  all  the  eigenvalues  k  and

eigenfunctions yk x  are real.

Oscillatory behavior of eigenfunctions

With u=u  x  and g=w xv x  (9) becomes

[u y ' ] 'g y=0 (29)

If  u and  g were  positive  constants  the  solution  would  be
sinusoidal with radian frequency  =g /u .  The number of
zeros of that function over an interval of length  L would be
L / .  For  the general  case,  Sturm's  comparison  theorem

says that if  umax=max[u  x]  and  g min=min[w xv  x]
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are positive then the number of zeros of the solution of (9)
over an interval of length L is bounded by

#  zeros  ≥
L
  g min

umax

(30)

If  w  x  is  positive  then  g min=min[w  xv  x]  will

increase as   increases and the solution y x  will oscillate
more rapidly (have more zeros) with increasing  .

Arguing in this manner, it can be proven that if u  x0  and

w  x0  over the interval  x1xx2  then the eigenvalues
of (9) form an infinite sequence

01⋯n⋯ (31)

which is unbounded, that is,  n∞  as  n∞ . Moreover if

yn x   is the eigenfunction corresponding to eigenvalue  n ,

then  yn x   has  precisely  n zeros  over  x1xx2 .  In  this
sense  the  solutions  to  a  Sturm-Liouville  problem  having
u ,w0  are qualitatively analogous to sinusoids. 

Generalized Fourier series

In your undergraduate coursework you have seen how useful it
can  be  to  represent  arbitrary  functions  as  Fourier  series
constructed from sines and cosines. 

Let's take an arbitrary linear combination of eigenfunctions of
a general Sturm-Liouville problem

y x=∑
k=0

∞

a k y k  x (32)

Since each of the yk x   satisfies the boundary conditions of
the  problem,  yx  will  also.  Multiplying  both  sides  by
w x  ym x   and integrating over the interval  [ x1, x2]  allows

us to solve for the coefficient am  because of the orthogonality
of the eigenfunctions

am=

∫
x1

x2

w x  ym x y xdx

∫
x1

x2

w x  ym
2  xdx

(33)

This gives us a generalized Fourier series that can be used to
represent any piece-wise continuous function over the interval
 x1, x2 . 

For systems with  u  x0  and w  x0  over   x1, x2 , the
unboundedness of the eigenvalues and the oscillatory behavior
of  the  eigenfunctions  allow  one  to  prove  that  the
eigenfunctions form a  complete  set,  that  is,  any (reasonably
well-behaved)  function  can be  rigorously represented  by its
generalized Fourier series.

Summary

A 2nd order LODE in Sturm-Liouville form

[u  x y' ] '[ w xv  x] y=0 (34)

over the closed interval x1≤x≤x2  with boundary conditions

a1 y  x1b1 y '  x1=0   or  u  x1=0
a 2 y x2b2 y '  x2=0   or  u  x1=0

(35)

and under the conditions that  u  x , v x ,w x  and  u '  x
are real and continuous and u  x0 , w  x0  over the open
interval  x1xx2  has  an  infinite,  unbounded  set  of
eigenvalues

01⋯n⋯ (36)

The corresponding eigenfunctions form a complete set that can
be used to represent any function  y x  over  x1xx2  as
the generalized Fourier series

y x=∑
k=0

∞

a k y k  x (37)

The coefficients are given by

am=

∫
x1

x2

w x  ym x y xdx

∫
x1

x2

w  x  ym
2  xdx

(38)

Delta functions

On a  different,  but  related  topic,  we will  make  use  of  the
impulse or delta function in this course. You learned about the
delta  function   t   in  your  undergraduate  linear-systems
courses.  Its  usefulness  primarily  stems  from  the  following
facts.  Any  function  x t   can  be  represented  as  the
convolution of itself with the delta function: x t =xt ∗t  .
If   t   is input to a linear, time-invariant system, the output
will be the impulse response  h t  .  If  x t   is input to the
same system the output will be the convolution of the input
and the impulse response: yt =x t ∗h t  . Thus in a sense,
if  we  can  determine  how  the  system  responds  to  a  delta
function  we  know  everything  there  is  to  know  about  the
system. What will be different in this course is that we will
primarily be  concerned  with delta  functions  in  space  rather
than in time. 

The one-dimensional delta function can be defined as

 x=lim
w 0{1 /w ∣x∣≤w /2

0 ∣x∣w /2
(39)

The delta function has the property that it is zero except when
its argument is zero (where it's infinite) and

∫  x dx=1 (40)

The sampling property of the delta function

∫ f  x   x−x 0 dx= f  x 0  (41)

is  very  useful.  We  can  represent  a  three-dimensional  delta
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function as a product of one-dimensional delta functions

  r=  x   y    z  (42)

Or we could define it as a spherical function

r=lim
w 0 {3/4 w3

 0≤r≤w
0 rw

(43)

In either case

∭ rdv=1 (44)

and the three-dimensional sampling property is

∭ f r r−r 0dv= f r0 (45)

Like other functions, delta functions can be expanded over the
eigenfunctions of a Sturm-Liouville system. For example

 x−=∑
k=0

∞

a k y k  x (46)

where

a m=
w(ξ) ym(ξ)

∫
x1

x2

w(x) ym
2
(x)dx

(47)

gives the coefficients. 
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