
1c.1

Lecture 1c

Linear ordinary differential equations

Terminology

A  general  1st order,  linear ordinary  differential  equation
(LODE) can be expressed in the form

y
′
+ p (x) y=r (x) (1)

If  the  forcing  function rx  is  identically  zero,  then  the
LODE is homogeneous (HLODE) and has the form

y
′
+ p (x) y=0 (2)

A general 2nd order LODE can be expressed in the form

y
″
+ p (x) y

′
+q (x) y=r( x) (3)

If the forcing function is identically zero, we have a 2nd order
HLODE

y
″
+ p (x) y

′
+q (x) y=0 (4)

The solution of 2nd order HLODEs will be a central issue for
us.

Numerical solutions

Although in this course we are primarily interested in analytic
solutions, it  is instructive to briefly consider how one might
develop numerical solutions to a differential equation. Suppose
we limit consider to a discrete set of x values

x k=x0+k h (5)

where h is a constant step size, and the corresponding function
values are denoted

yk =y (x k) (6)

From the definition of the derivative

y' ( x)=lim
h →0

y (x+h)−y( x)

h
(7)

we have the first derivative approximation

y' k≈
y k +1− y k

h
(8)

and the second derivative approximation

y k
″
≈

y k +2−y k+1

h
−

y k+1− yk

h
h

       =
y k +2−2 y k +1+ y k

h2

(9)

Equation (2) becomes

yk +1≈(1−h pk ) yk (10)

where  pk= p( xk ) .  We see that 1st order LODE is simply a

formula for computing a future value of the function,  y k +1 ,
from the present value y k . From this expression we see that if
y(x)=0  for any value of x then y(x)≡0  for all values of x.

That is, a non-trivial solution of a 1st order HLODE can never
vanish1.  To  initialize  this  solution  we need  a  single  initial
condition, for example, y(x0)=y0 . We can take y (x0)=1  to
define a specific function y1(x) . Any solution to the HLODE
can then be written y (x)=a 1 y1(x) .

Our approximation to (4) reads

yk +2≈2 y k+1−y k −h2 [q k y k+ p k ( yk +1−y k )/h] (11)

or

yk +2≈y k +1+(1−hpk )(y k +1− y k )−h2 qk y k (12)

We see that a 2nd order  HLODE is a formula for using two
function values, y k , y k+1 , to compute the future value y k +2 .
To initialize this solution we need  two initial conditions, say
y (x0)= y0  and  y (x1)= y1 .  Equivalently  we could  specify
y (x0)= y0  and  y

′
(x0)=(y1−y 0)/h .  We  can  form  two

specific solutions by, say, taking y (x 0)=1  and y
′
(x0)=0  to

generate  a  solution  y 1(x)  and  taking  y (x0)=0  and

y
′
(x0)=1  to generate a solution y 2(x) . Any solution to the

HLODE  can  then  be  written  as  y (x)=a 1 y1(x)+a2 y 2(x) .

The initial conditions will be y (x0)=a1  and y
′
(x0)=a 2 .

For  the  2nd order  HLODE,  it  is  possible  for  a  non-trivial
solution  to  vanish  at  some  value  of  x.  If,  say,  x k=0  but
x k+1≠0  then in general  yk +2≠0 .  A solution is identically

zero  if  and  only if  both  the  function  and  the  1st derivative
vanish at some value of x. 

Analytic solutions

The solution to the 1st order HLODE is 

y(x)= y0 e
−∫

x 0

x

p ( s) ds
(13)

The  constant  y0  is  determined  by  the  initial  condition
yx0=y0 . 

For  the 2nd order  HLODE,  there  always exists two  linearly
independent solutions  y1x  and  y2x .  By  linearly
independent we mean that a1 y1 xa2 y2 x≡0  if and only if
a1=a 2=0 .  If  the  functions  are  linearly  dependent,  then
a1 y1 x≡−a2 y2x  and they are the same function to within

a  multiplicative  constant.  Any solution  to  the  homogeneous
equation can be written as a linear combination of two linearly
independent solutions

yx=a1 y1 xa2 y 2x (14)

The  two  constants  are  uniquely  determined  by initial
conditions of the form

1 This assumes that p(x)  remains finite.
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 yx0 =b1

y' x0=b2

(15)

We have

 y1x0  y2 x0
y1 'x 0 y2 ' x0 

a1
a2=b1

b2 (16)

The determinant of the matrix is called the Wronskian

W (x)=y1(x) y2

′
(x)− y1

′
(x) y2(x) (17)

If  W x0 ≠0  then the matrix in (16) is non-singular (hence
invertible) and our problem has a unique solution. Let's take a
derivative of W x . We have

W ' x= y1x y2 ' 'x− y1 ' ' x y2x

= y1[−p y2 '−q y2]− y2 [− p y1 ' −q y1 ]
=−p x[ y1x y2 'x − y1 'x y2 x]

=−p xW  x

(18)

Therefore the Wronskian satisfies

W 'x pxW x=0 (19)

This 1st order HLODE has solution

W x=W x 0e
−∫

x
0

x

p t dt (20)

If  the  Wronskian  is  nonzero  at  any  point,  then  it  never
vanishes in a domain in which px  is finite, and the initial
value problem will have a unique solution.

Constant coefficients

If  the functions  px , qx  are constants,  our  HLODE has
the form

y' ' p y'q y=0 (21)

In this case there are two solutions of the form y1=e
s
1

x  and

y2=e
s
2

x  where s1, s2  are the (possibly complex) roots of

s2 p sq=0 (22)

namely

s=
−p± p2−4q

2
(23)

For  s1≠s2 ,  y1 / y2=e
s
1
−s

2
 x  is  not  a  constant,  so  the  two

solutions  are  linearly  independent.  This  fails  only  when
p2=4 q , since this results in s1=s2=− p /2 . In this case it is

easy  to  verify  that  two  linearly  independent  solutions  are
y1=e−px / 2  and y2=x e− px /2 . 

Non-constant coefficients

The general 2nd order LODE is

y' ' p x y' q x y=r x (24)

If  the  functions  px , qx , rx  are  analytic  they can  be

represented by convergent power series

p (x)=∑
n=0

∞

pn x n

q(x)=∑
n=0

∞

qn x n

r(x)=∑
n=0

∞

rn x n

(25)

where pn , qn , rn  are constants. The solutions are also analytic
and can be represented by convergent power series. That is, we
can write

yx=∑
n=0

∞

a n xn
(26)

Note that

y0 =a0
y'0 =a1

(27)

So  the  first  two  coefficients  are  determined  by  initial
conditions at x=0 . For the derivatives we have

y'x=∑
n =1

∞

n an x n−1
(28)

y' ' x=∑
n =2

∞

n n−1 a n xn−2
(29)

Substituting these into the LODE, along with the power series
for px , qx , rx , we obtain

∑
n =2

∞

n n−1 a n xn−2
∑

n=0

∞

pn xn ∑
n =1

∞

n an xn −1

                            ∑
n =0

∞

qn xn ∑
n =0

∞

an xn
=∑

n =0

∞

rn xn
(30)

By collecting the coefficient of  xn  on the left-hand side and
equating it  to  rn  we can solve for  an .  In  general  we will
obtain a recursion relation for the coefficients  a2,a3,a4,  in
terms of  a0 , a1 .  If  a0 , a1  have been determined by initial
conditions,  then  this  is  the  solution  to  our  particular  initial
value problem. If we want to develop two linearly independent
solutions  we  could  take,  for  example,  a0=1 , a1=0  for

y1x  and a0=0 , a 1=1  for y2x . 

Frobenius method

If  in a  2nd order  HLODE the functions  px , qx  are not
analytic,  it  may  still  be  possible  to  find  series  solutions.
Typically  for  us  the  problem  is  that  either  p or  q has  a
singularity at  x=0 , for example,  px=1 /x  "blows up" at
x=0 .  If  x p x  and  x2 q x  are  analytic  then  the

singularity is a regular singularity; otherwise it is an irregular
singularity.  For  a  regular  singularity,  there  is  at  least  one
solution of the form2

yx=xr ∑
n =0

∞

an xn
(31)

2If the singularity is at x=x0  then we use x−x0   in place of x in
our series solution. 
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where  r is an arbitrary constant. We plug this form into the
ODE and solve for  r and the coefficients  an . In general two
values of r will be found, say r1  and r2 . Then we will have
obtained two solutions of the form

y1x=x r 1 ∑
n=0

∞

an xn

y2x=x
r
2 ∑
n=0

∞

bn xn
(32)

Assume the first non-zero coefficients are a p  and bq . Then
for x0

y1x~a p x
r
1
 p

y2x~bq xr 2 q (33)

If y1x , y2 x  are linearly dependent then for x0

y1x 

y2x 
~

a p

bq

xr 1 −r 2 p −q
=c (34)

where c is a constant. This requires that r1−r2p−q=0 , so
r1−r2=q− p . Since p and q are integers, we must have that
r1−r2  is an integer. Therefore, if  r1−r2  is not an integer,

the  two solutions  are  linearly independent.  If  r1−r2  is  an
integer,  the  two  solutions  may,  or  may  not,  be  linearly
independent. If the two solutions are linearly dependent, then
we can find a second solution of the form

y2x=ln x y1 xu x (35)

where

ux =xr 2 ∑
n=0

∞

bn xn
(36)

Convergence of Series

When representing functions by power series such as

yx=∑
n=0

∞

a n xn
(37)

the question naturally arises: Does the series  converge? Let's
define  what  we  mean  by  this.  Consider  the  sequence  of
functions

yk x=∑
n=0

k

an xn (38)

If given any 0  you can find an N such that

∣yk x− y x∣ (39)

for all kN  then the sequence of functions converges to the
limit yx . This may be true for all x or it may be true only
for certain values of  x. In practical terms this means that the
function can be approximated by a polynomial of order  N to
within an error of   over some interval of the x axis.

Consider any sequence of numbers  sn  and the sequence of
summations

Sk=∑
n =0

k

sn (40)

If we can always find an  N such that for any 0  we have
∣S k −S∣  whenever  kN  then  we say the  sequence  of

summations converges, and we write

S=∑
n=0

∞

sn (41)

If  ∑
n =0

∞

∣sn∣  converges  then we say that  the series  converges

absolutely. Since 

∣∑n =0

∞

sn∣≤∑
n =0

∞

∣sn∣ (42)

a series which converges absolutely also converges. Note that
if ∣sn∣≤∣tn∣ , where tn  is some other sequence, then

∑
n =0

∞

∣sn∣≤∑
n =0

∞

∣tn∣ (43)

Therefore if each term in a series has magnitude less than the
magnitude of each term in some other, absolutely convergent
series, that first series is also absolutely convergent.

Consider

(1−x)(1+x+x 2
+⋯+x k

)=(1+x+x2
+⋯+x k

)

                                   −(x+x2+x3+⋯+x k+1)

                                   =1−x k+1

(44)

from which

∑
n=0

k

xn
=

1−x k+1

1−x
(45)

If  ∣x∣<1  then  lim
k → ∞

xk +1
→0  and  we  obtain  the  geometric

series

1
1−x

=∑
n=0

∞

xn (46)

which is absolutely convergent for  ∣x∣1 .  Therefore,  if for
some sequence we have

∣sn∣≤A qn (47)

were A is a positive number and 0q1 , then we can write

∑
n =0

∞

∣sn∣≤A∑
n =0

∞

qn
=

A
1−q

(48)

It follows that the series ∑
n =0

∞

sn  is absolutely convergent. This

is called the comparison test. It also follows that 

∣∑n= N

∞

sn∣≤ ∑
n= N

∞

∣sn∣≤A ∑
n = N

∞

qn
=A

q N

1−q
(49)

This gives an upper bound for the error that results if we sum
only the first N terms of the series. Since in numerical practice
we can only sum a finite number of terms, this is very useful to
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know.

Equivalently, the series is absolutely convergent if there exists
an N such that for all nN

∣sn 1

sn
∣≤q1 (50)

This is called the  ratio test for convergence. As an example,
consider the power series

e x
=∑

n=0

∞ xn

n!
(51)

Applying the ratio test we have

∣
x n 1 

n1 !

xn

n!
∣=∣ x

n1∣ (52)

If we take any N≥∣x∣  then clearly for nN  this ratio will be
less than unity. Therefore the series is absolutely convergent
for all x. If we approximate the series by its first N terms

e x≈ ∑
n =0

N−1 xn

n!
(53)

we have the error bound

∑
n = N

∞ xn

n!
≤

xN

N!
∑
n =0

∞

qn
=

xN

N!

1
1−q

(54)

where 

q=∣ x
N1∣ (55)
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