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Lecture 1b

Differential operators and
orthogonal coordinates

Partial derivatives

Recall  from your  calculus  courses  that  the  derivative  of  a
function can be defined as

d
dx

f (x)=lim
δ→0

f (x+δ)− f (x)
δ

(1)

or using the central difference form:

d
dx

f (x)=lim
δ→0

f (x+δ/2)− f (x−δ/2)
δ

(2)

The  partial  derivative of  a  function  of  several  variables  is
defined  in  a  similar  manner  by  varying  only  one  of  the
variables, such as

∂
∂ y

f (x , y)=lim
δ→ 0

f (x , y+δ)− f (x , y)
δ

(3)

The other variables remain fixed. Multiple derivatives can be
defined accordingly. For example,

∂
∂ x

∂
∂ y

f ( x , y)=lim
δ→0

∂ f
∂ y

(x+δ , y)−
∂ f
∂ y

(x , y)

δ
(4)

where ∂ f /∂ y  is defined in (3). From the definition it follows
that  the  order  in  which  the  derivatives  are  taken  does  not
matter1. For example

∂
2

∂ x ∂ y
f = ∂

2

∂ y ∂ x
f (5)

because in both cases we have the limit as δ→0  of

f (x+δ , y+δ)+ f (x , y)− f (x+δ , y)− f ( x , y+δ)

δ
2 (6)

Gradient

Assume a scalar field f ( x , y , z)  is defined in some region of
space.  If  we  start  at  the  point  (x , y , z )  and  move  a
displacement  dl=â x dx+â y dy+â z dz  away,  the  function
value will change from f  to f +df . The change is given by

df =
∂ f
∂ x

dx+
∂ f
∂ y

dy+
∂ f
∂ z

dz (7)

This motivates us to define a vector field, which we call the
gradient of f , by the formula

∇ f =â x
∂ f
∂ x

+â y
∂ f
∂ y

+â z
∂ f
∂ z

(8)

We can abstractly think of the del operator as

1 Provided  f satisfies  some  basic  continuity/differentiability
conditions.

∇ =â x
∂

∂ x
+â y

∂
∂ y

+â z
∂
∂ z

(9)

The  del  operator  applied  to  a  scalar  field  produces  the
gradient.

For any displacement dl we can write

df =∇ f⋅dl (10)

For a fixed length displacement (dl) this dot product will be
greatest if dl is parallel to the gradient. Therefore the direction
of the gradient is the direction of the maximum rate of change
of  the  scalar  field  with  respect  to  displacement,  and  the
magnitude of the gradient is the corresponding rate of change.
This gives us a physical interpretation of the gradient that is
independent of the coordinate system.

Divergence and divergence theorem

The “dot product” of the del operator with a vector field gives
a  scalar  field  called  the  divergence of  the  vector  field.  We
have

∇⋅A= ∂
∂ x

Ax +
∂

∂ y
Ay+

∂
∂ z

Az (11)

We denote the flux of A through the closed surface S by 

ψA=∯S
A⋅ds (12)

The  divergence  theorem states  that  the  surface  flux  is  the
volume integral of the divergence

∭V
∇⋅Adv=∯S

A⋅ds (13)

If  our  volume  is  small  enough  that  ∇⋅A  is  effectively
constant, then the volume integral reduces to V ∇⋅A  and 

∇⋅A≈
1
V ∯S

A⋅ds (14)

We have the physical interpretation that divergence is surface
flux  per  unit  volume.  Note  that  this  interpretation  is
independent  of  any  particular  coordinate  system.  The
mathematical  expression,  however,  will  depend  on  the
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Figure 1: Divergence for a small cubic surface.
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coordinate system. 

Let's  consider  the  divergence  theorem  in  rectangular
coordinates applied to a box of dimensions dx, dy, dz. If Ay  is
the component of A "entering" the x,z face at y=0 , then we
have  an  inward  flux  of  Ay dx dz .  At  y=dy  the  field  is
Ay+(∂ Ay /∂ y)dy  so  we  have  an  outward  flux  of
[ Ay+(∂ Ay /∂ y)dy ]dx dz .  The  net  outward  flux  is
(∂ Ay /∂ y)dxdy dz=(∂ Ay /∂ y)dv .  Repeating in the  x  and  z

directions we obtain for the flux. 

∇⋅A dv=( ∂
∂ x

Ax+
∂

∂ y
Ay+

∂
∂ z

Az)dx dydz (15)

Curl and Stoke's theorem

The cross product of the del operator with a vector field gives
a vector called the curl of the vector field. 

∇×A=  â x( ∂
∂ y

Az−
∂

∂ z
Ay)

  +â y( ∂
∂ z

Ax−
∂
∂ x

A z)
  +â z( ∂

∂ x
Ay−

∂
∂ y

Ax)

(16)

Stoke's theorem  states that the integral of a vector field around
a closed loop equals the integral of the curl over any surface
bounded by that loop, or 

∬S
(∇×A)⋅ds=∮L

A⋅dl (17)

For a very small, flat surface of area S over which ∇ ×A  can
be considered constant, we have ∬S

(∇×A)⋅ds≈(∇×A)⋅S .

This is illustrated below. If we call ∮L
A⋅dl  the rotation of A

about the curve L then the physical significance of the curl is
that  ∣∇×A∣  is the maximum rotation per unit area, and the
rotation has this value in the plane normal to ∇ ×A .

Notice that if  A=â z Az  everywhere then  â z⋅∇×A=0 . In
general, if the direction of  A is constant then  ∇ ×A  has no
component parallel to A and A⋅∇×A=0 .

Keep  in  mind  that  A⋅∇×A=0  is  not  an  identity.  For
example, at a single point in space we might have Ax=Ay=0

giving  A=â z Az ,  but  if  ( ∂
∂ x

A y−
∂

∂ y
Ax)≠0  then  ∇ ×A

will have a  z component. The condition  A⋅∇×A=0  holds
everywhere only if the direction of A is the same everywhere.

In the above illustration, we will get the most rotation about
the curve if  we orient  S to  be parallel  to  ∇ ×A .  For  this

orientation we have  ∣∇×A∣≈
1
S ∮L

A⋅dl . The magnitude of

the curl is the maximum rotation per unit area, and the rotation
is maximum in a plane normal to the direction of ∇ ×A . This
physical  interpretation  is  independent  of  any  particular
coordinate system. As always, the mathematical expression of
this  interpretation  will  depend  on  the  coordinate  system
employed. 

A possible misconception of the curl of a vector field is that
∇ ×A≠0  implies that the direction of the field  A somehow

"curls around" the vector  ∇ ×A . This is not necessarily the
case. For example,  A=â y x 2  gives ∇ ×A=â z(2 x) , but the
direction of A does not make circles around the z axis. Instead,
if we integrate A⋅dl  around a circle we get a non-zero value.

The derivation of the z component of the curl is shown below.

If we integrate  A⋅dl  counter-clockwise around the rectangle
of dimensions dx, dy we get a positive contribution Ax dx  on
the  bottom  size  and  a  negative  contribution
−(Ax+∂ Ax /∂ y dy )dx  on  the  top  side.  The  net  is
−∂ Ax /∂ y dy dx .  Likewise,  we  get  a  positive  contribution
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Figure 2: Curl of a vector field.
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(Ay+∂ Ay /∂ x dx)dy  from  the  right  side  and  a  negative
contribution  −A y dy .  The  net  is  ∂ Ay /∂ x dx dy .  The  total
line  integral  is  (∂ Ay /∂ x−∂ Ax /∂ y)dx dy .  This  is
(∇ ×A)⋅â z dx dy .

Laplacian

The divergence of the gradient of a scalar function is called the
Laplacian of the function and is denoted by ∇

2 f . We have

∇
2 f =∇⋅(∇ f )=

∂
2 f

∂ x2 +
∂

2 f

∂ y2 +
∂

2 f

∂ z2 (18)

In rectangular coordinates the Laplacian is the sum of second
derivatives.  The  second  derivative  is  the  derivative  of  the
derivative,  and  using  the  central-difference  definition  of  a
derivative we have (valid as δ→0 )

      
d 2

dx 2 f (x)=
d
dx

d
dx

f (x)≈

df
dx

(x+δ/2)−
df
dx

(x−δ/2 )

δ
(19)

Using the central-difference definition again gives us

d 2

dx2
f (x)≈

( f (x+δ)− f ( x)
δ )−( f (x)− f (x−δ)

δ )
δ

=
2

δ
2 {[ f (x+δ)+ f ( x−δ)]

2
− f (x)}

(20)

We see that the second derivative is related to the difference
between the function value at a point and the average value
nearby. 

Doing the same for the y and z coordinates we obtain

∇
2 f ≈

6

δ
2×

[16 (   f (x+δ , y , z)+ f (x−δ , y , z)
+ f (x , y+δ , z)+ f (x , y−δ , z )
+ f (x , y , z+δ)+ f (x , y , z−δ))− f (x , y , z)]

(21)

Therefore, the Laplacian of a function measures the difference
between  the  function  at  a  point  and  the  function's  average
value at neighboring points. More precisely, the Laplacian is
6 /δ

2  times the difference between the average value of the
function on a sphere of (very small) radius d and the value of
the  function  at  the  sphere  center.  Indeed,  if  ∇

2 f =0
everywhere, then the average value of f over a sphere (of any
size) is equal to the value of  f at the sphere's center (this is
called "Gauss's harmonic function theorem"). 

In  rectangular  coordinates,  the  Laplacian  of  a  vector  is
defined as a vector whose components are the Laplacians of
the corresponding components of the vector.

∇
2A≡â x ∇

2 Ax+â y ∇
2 A y+â z ∇

2 Az (22)

Note that this definition is specific to rectangular coordinates.
In other coordinate systems the Laplacian of a vector is not so
simple. We will need to revisit this when we consider spherical

coordinates. 

General orthogonal coordinates

Consider  any  orthogonal coordinate  system  where  spatial
position r is determined by the three coordinates u , v , w . We
typically specify three functions x(u , v , w) , y (u , v , w)  and
z(u , v , w)  that give the rectangular coordinates as functions

of u , v , w . As an example

x=usin (v)cos (w)
y=usin (v)sin(w)
z=u cos(v)

(23)

defines the spherical coordinates  u , v , w  (which we usually
denote as r ,θ ,ϕ ). 

By orthogonal we mean that the unit vectors 

â u=
∂ r /∂ u
∣∂ r /∂ u∣

  â v=
∂ r /∂ v
∣∂ r /∂ v∣

  âw=
∂ r /∂ w
∣∂ r /∂ w∣

(24)

are  orthogonal  at  all  points  in  space,  that  is,
â u⋅â v=â u⋅â w=â v⋅âw=0  everywhere. 

Let's define

hu=|∂ r
∂ u | (25)

and likewise for hv , hw . We call these the metric coefficients.
The  physical  significance  of  hu  is  that  the  length  of  the
displacement  d r  due to  a  change in  the coordinate  u  of
magnitude du  is dl=hu du .

Let  the  coordinates  change  by  the  differential  amounts
du ,dv ,dw . The length of the resulting displacement, call it

dl, will be given by the Pythagorean formula2

dl 2
=hu

2 du2
+hv

2 dv2
+hw

2 dw2 (26)

For example, in rectangular coordinates

dl 2=dx 2+dy2+dz2 (27)

and we see that h x=h y=h z=1 . In cylindrical coordinates

dl 2=(1 )
2d ρ

2
+(ρ)

2 d ϕ
2
+(1)2dz 2 (28)

so hρ=hz=1,hϕ=ρ . In spherical coordinates

dl 2=(1 )
2dr 2+(r)

2 d θ
2
+(r sin θ)

2 d ϕ
2 (29)

so hr=1,hθ=r , hϕ=r sinθ . The metric coefficients determine
the specific forms that  the differential operators  take, as we
will now see.

Gradient

The  gradient  is  a  “directional  derivative.”  The  value  of
(∇ f )⋅â  is  equal  to  df /dl  in the direction of  â .  In  the

2 The  Pythagorean  theorem  applies  only  if  the  coordinates  are
orthogonal. Non-orthogonal coordinates would have cross-terms
such as huv du dv .
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direction  â u ,  dl=hu du ,  so  the  u component  of  ∇ f  is
(∂ f /∂ u)/hu  and  similarly  for  the  v and  w components.

Therefore

∇ f =âu

1
h u

∂ f
∂ u

+âv

1
hv

∂ f
∂ v

+â w

1
hw

∂ f
∂ w

(30)

This  expresses  the  gradient  in  any  orthogonal  coordinate
system. 

Divergence

The physical significance of the divergence is that  ∇⋅A  is
the net outward flux per unit volume of the vector field A from
an infinitesimal volume  dV.  Consider a volume produced by
the coordinate changes  du ,dv ,dw . The lengths of the sides
will  be  hu du ,hv dv , hw dw  so  the  volume  will  be
dV =hu hv hw du dv dw  (note the distinction between  dV and

dv).  Consider  the flux in  the  u direction.  The flux into the
volume will be hv dv hw dw Au  evaluated at u. The flux out of
the volume will be  hv dv hw dw Au  evaluated at  u+du . The
next flux in the â u  direction is 

[(hv hw Au)u+du−(hv hw Au)u ] dv dw

                             = ∂
∂u

(hv hw Au)dudv dw
(31)

We can write this as 

1
h uh v hw

∂
∂u

(hv hw Au)dV (32)

Applying the same idea to the remaining coordinates we have

∇⋅A=
1

hu hv hw

∂
∂ u (hv hw Au)

+
1

hu hv hw

∂
∂ v

(hw h u Av)

+
1

hu hv hw

∂
∂ w (hu hv Aw)

(33)

as  our  expression  for  the  divergence  in  general  orthogonal
coordinates. 

Laplacian

Since the Laplacian is the divergence of the gradient, we can
determine  its  expression  using  our  two  previous  results.
Substituting the  u,v,w components of (30) for  Au , Av , Aw  in
(33) we obtain

∇
2 f =

1
hu h v hw

∂
∂u (hv hw

hu

∂ f
∂u )

+
1

hu h v hw

∂
∂v( hw hu

hv

∂ f
∂v )

+
1

hu h v hw

∂
∂ w( hu hv

h w

∂ f
∂ w)

(34)

Curl

The  curl  is  the  rotation  per  unit  area.  Let's  consider  the
component of rotation about the w axis. As illustrated below,
consider the contribution of Av  to this.

For  rotation  in  the  direction  shown,  at  u+du  we have  a
contribution  to  ∮A⋅dl  of  (Av hv dv)u+du .  At  u the
contribution  is −(Av hv dv)u  .  The  total  contribution  due  to

Av  is  (Av hv dv)u+du−(Av hv dv)u=
∂

∂ u
(hv Av)du dv .   Au

contributes  (Au hu du )v−( Au hu du)v+dv =− ∂
∂ v

(hu Au)du dv

The area is hu hv dudv  so the w component of ∇ ×A  is

1
h uh v

[ ∂
∂u (hv Av )− ∂

∂v (hu Au)] (35)

Doing the same for the u and v components we obtain

∇×A=
â u

hv hw
[ ∂
∂ v (hw Aw)− ∂

∂ w (hv Av )]
+

âv

hw hu
[ ∂
∂w (hu Au)− ∂

∂ u (hw Aw)]
+

âw

hu hv
[ ∂
∂u (h v Av )− ∂

∂ v (hu Au)]

(36)
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Figure  5: Calculating the u contribution to
divergence.
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Useful differential operator identities

The  following  identities  can  be  directly  verified.  The
divergence of the curl of a vector field is identically zero

∇⋅( ∇×A )=0 (37)

The curl of the gradient of a scalar field is identically zero.

∇ ×∇ f =0 (38)

Recall  the  product  rule  for  scalar  derivatives:
( fg )'= f g ' + f ' g .  Here  are  product  rules  involving

gradient, divergence and curl.

∇ ( fg )= f ∇ g+(∇ f )g (39)

∇⋅( f A)= f ∇⋅A+∇ f⋅A (40)

∇ ×( f A)= f ∇×A+∇ f ×A (41)

The following formula for the divergence of a cross product
will be important for us

∇⋅A×B =B⋅∇×A−A⋅∇×B (42)

We will make extensive use of the following identity

∇ ×∇×A=∇ (∇⋅A )−∇
2 A (43)

This can be directly verified in rectangular  coordinates.  We
can rewrite this as

∇
2A≡∇ (∇⋅A )−∇×∇×A (44)

This will serve as the definition of the Laplacian of a vector
field in any coordinate system. In  rectangular  coordinates it
works out to be (22), but for a general system of orthogonal
coordinates  u ,v , w  it  does  not  work  out  so  “cleanly.”  In
general

∇
2A≠âu ∇

2 Au+â v ∇
2 Av+â w ∇

2 Aw (45)

In non-rectangular systems we must use (44) to describe the
Laplacian of a vector.
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Appendix –  Orthogonal coordinate systems

The  Helmholtz  equation  is  known to  be  separable  in  eight
coordinate systems in addition to rectangular, cylindrical and

spherical coordinates [4]. Some of these are

Elliptic cylindrical coordinates

x=acosh ucos v
y=a sinh usin v
z=w

Here a is a fixed parameter chosen to give a desired elliptical
geometry and  u ,v , w  are the coordinates.  These are similar
to (circular) cylindrical coordinates except that radial distance
r has  been  replaced  by  a cosh u  for  the  x coordinate  and
a sinh u  for the y coordinate. For fixed u,

( x
a cosh u)

2

+( y
asinh u )

2

=cos2 v+sin2 v=1

is  the  equation  of  an  ellipse  with  semi-major/minor  axes
a cosh u  and a sinh u . For fixed v,

( x
a cos v )

2

−( y
a sinv )

2

=cosh2u−sinh2 u=1

is the equation of a hyperbola.

Bipolar cylindrical coordinates

x=
a sinh u

cosh u−cosv

y=
asin v

cosh u−cos v
z=w

Again,  a  is  a  fixed parameter.  A surface of constant  u is  a
circular  cylinder  of  radius  r=|a /sinh u|  and  center
x=acosh u /sinh u , y=0 .  These  coordinates  are  useful  for

describing a two-wire transmission line. 

Spheroidal coordinates

There  are  two  spheroidal  coordinate  system  related  to
spherical coordinates by “stretching” or “compressing” the  z
coordinate. The prolate spheroidal coordinates are defined by

x=asinh u sin v cos w
y=a sinh usin v sin w
z=a cosh u cosv

these  are  similar  to  the  spherical  coordinates  (with
v=θ , w=ϕ ) but with r=a sinh u  for the x, y coordinates and
r=a cosh u  for the z coordinates. Since cosh u>sinh u  the z

coordinate will be larger (relative to the x,y coordinates) than it
would be in spherical coordinates. The result is that a surface
of constant u is a spheroid that is stretched in the z direction.

On the other hand, for the oblate spheroidal coordinates  

x=acosh usin v cos w
y=a cosh usin vsin w
z=asinh ucos v

the situation is reversed; the z coordinate is relativity smaller. 

EE518: Advanced Electromagnetic Theory I Scott Hudson 2015-02-02


	Partial derivatives
	Gradient
	Divergence and divergence theorem
	Curl and Stoke's theorem
	Laplacian
	General orthogonal coordinates
	Useful differential operator identities
	References
	Appendix – Orthogonal coordinate systems

