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Lecture 1a

Complex numbers, phasors and vectors

Introduction

This  course will  require  you to apply several  concepts  you
learned in your  undergraduate math courses.  In  some cases,
such  as  complex  numbers  and  phasors,  you  have  probably
used these concepts regularly.  In other cases, such as vector
calculus and series solutions of differential equations, this may
be the first time you have had to apply them. Accordingly our
first few lectures will be devoted to a mathematical review. As
this is  a  review, we will not  derive  most of  the results  and
theorems,  but  merely state  them. If  you  wish to  review the
derivations,  please refer  to your undergraduate math/physics
texts.

Complex numbers

The imaginary unit  j  has the property1

j2
=−1 (1)

A general complex number can be expressed as

z=x+ j y (2)

where  x and  y are real  numbers. We call them the  real and
imaginary parts of z and we write

x=Re{z}
y=Im{z}

(3)

We can also express a complex number in a  polar format by
writing

x=ρcosϕ
y=ρ sinϕ

(4)

where  ρ  and  ϕ ,  the  modulus and  argument (or  the
magnitude and phase), are real numbers related to x and y by2

ρ=√ x2+ y2
ϕ= tan−1( y/ x)

(5)

Using (4) we can express a complex number in the form

z=ρ(cos ϕ+ j sinϕ)
=ρ e jϕ

(6)

where in the last step we've used Euler's formula

e j ϕ
=cos ϕ+ j sinϕ (7)

Some important values are

1 Electrical engineers use j for the imaginary unit instead of i as is
common in math and physics texts.

2 The inverse tangent must be a “four-quadrant” version such as
the atan2(y,x) function in Matlab.

e± j 0   =   1
e± jπ/2

=± j
e± j π   =−1

(8)

From Euler's formula it follows that

cosϕ=
e j ϕ
+e− jϕ

2

sinϕ=
e j ϕ
−e− j ϕ

2 j

(9)

We  sometimes  use  the  following  notation  to  signify  the
magnitude and phase of a complex number 

ρ=|z|
ϕ= z

(10)

We can then write

z=| z|e jÐ z (11)

As a shorthand we can leave out  the  e j .  For  example,  we
might write  z=1.5Ð32∘  (some calculators use this type  of
notation). This means z=1.5e j 32∘

=1.5[cos(32∘)+ j sin (32∘)] .

The  conjugate of a complex number is denoted by z∗ . It is
obtained by changing the sign of the imaginary part

z∗=x− j y (12)

Since

ρe− j ϕ=x− j y (13)

we can also obtain the conjugate by changing the sign of the
argument.  In  general  the  change  j←− j  in  an  expression
produces the conjugate.

Let  z=x+ j y  and  w=u+ j v  be  two  complex  numbers.
Their sum and difference are

z±w=(x±u)+ j (y±v) (14)

The  real  and  imaginary parts  of  the  sum/difference  of  two
complex  numbers  are  the  sum/difference  of  the  real  and
imaginary parts of the complex numbers. The product of two
complex numbers is

zw=(x+ jy )(u+ jv )
=(xu−yv)+ j( xv+ yu)

(15)

In polar notation we have

zw=|z| e j z|w|e jw

=|z||w| e j ( z+ w)
(16)

The magnitude of the product is the product of the magnitudes
and the phase of the product is the sum of the phases. Note that

z z∗=| z|2=x2
+y2 (17)

 For division we have 
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z
w
=

z
w

w∗

w∗

=
xu+ yv

u2
+v2 + j

yu−xv

u2
+v2

(18)

in rectangular form or

z
w
=
|z|
|w |

e j (Ðz−Ðw) (19)

in polar form. The magnitude of the quotient is the quotient of
the magnitudes and the phase of the quotient is the difference
of the phases.

The exponential of a complex number is

e z
=e x e jy

=e x (cos y+ jsin y )
(20)

When taking the product of exponentials we add the (complex)
exponents

e z ew=e z+w (21)

Fourier Transforms and Phasors

The Fourier transform of a function of time f ( t)  is

F (ω)=∫
−∞

∞

f ( t)e− j ωt dt (22)

We often call F (ω)  the spectrum of f ( t) ; ω  is the radian
frequency. The inverse Fourier transform is

f ( t )=∫
−∞

∞

F (ω)e j ωt
d ω
2π

(23)

This shows that any function  f ( t)  can be represented as a
superposition of functions of the form e j ωt  weighted by the
spectrum F (ω) .

Linear,  time-invariant (LTI)  systems  have  the  important
property that if a sinusoid of a given frequency is applied as
the  “input”  then  the  “output”  is  a  sinusoid  at  the  same
frequency. All that can change is the magnitude and phase of
the sinusoid, not the frequency.  This property is very useful
for analyzing physical systems. Since we will find ourselves
using  sinusoidal  signals  almost  exclusively,  a  bookkeeping
technique call phasor notation will prove very convenient.

A general sinusoidal signal can be written

v (t )=a cos(ω t+ϕ) (24)

where  a is the  magnitude,  ϕ  the  phase and  ω  the radian
frequency. We can write

acos (ω t+ϕ)=Re{a e j (ω t+ϕ)}
=Re{[ ae jϕ] e jω t}

(25)

We define the phasor of v (t )  to be the complex number

V=a e j ϕ (26)

Then

v (t )=Re {V e jω t} (27)

In  phasor  analysis  we  use  the  complex  constant  V as  a
representation of the  time-domain signal  v (t ) .  We develop
equations and solutions in the  phasor domain.  Any time we
want the time-domain signal we multiply by e j ωt  and take the
real part. 

For  a  non-sinusoidal  signal  v (t ) ,  we  can  consider  a
superposition of phasors at different frequencies:

v(t)=∫
−∞

∞

Re {V (ω)e j ωt }d ω
2π

=Re{∫−∞
∞

V (ω)e j ωt d ω
2π }

(28)

where  V (ω) ,  the  phasor  amplitude  as  a  function  of
frequency, is the spectrum of v (t ) . 

Vectors

We refer  to  a  single  number,  either  real  or  complex,  as  a
scalar.  Scalars  can  represent  physical  properties  that  are
specified  by  an  amplitude  (and  possibly  phase),  such  as
pressure  or  voltage.  For  properties  that  have  both
amplitude/phase  and  direction,  such  as  force,  we  employ
vectors. We will use bold-face letters to represent vectors, for
example  A. When writing by hand one typically represents a
vector using a bar or arrow above a letter,  as in  A  or  A⃗ .
Another  notation is to underline the letter,  as in  A ,  which
represents boldface. 

In rectangular coordinates we represent a vector by its three
components in the x, y and z directions

A=(Ax , Ay , A z) (29) 

The  magnitude of  a  vector  is  a  scalar  and  in  rectangular
coordinates is given by the Pythagorean formula

∣A∣=√∣Ax∣
2
+∣A y∣

2
+∣A z∣

2
(30)

We  will  often  represent  the  magnitude  of  a  vector  by  the
corresponding italic letter, as in A≡∣A∣ .

Location in space is usually represented by the position vector

r=(x , y , z ) (31)

In this case r represents distance from the origin to the point r.

Adding or  subtracting vectors is accomplished by adding or
subtracting their components

A±B=( Ax±B x , Ay±By , A z±B z) (32)

This is illustrated below. It can be useful to think of a vector
difference as  A−B=A+(−B) , that is, we flip the direction
of the second vector and add.
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Unit vectors

If we divide a vector by its magnitude we obtain a vector that
has unit magnitude. We will use the following notation for unit
vectors:

â A=
A
∣A∣

(33)

The  three  unit  vectors  corresponding  to  the  rectangular
coordinate axes are

â x=(1,0,0)  ; â y=(0,1,0)  ; âz=(0,0,1) (34)

These provide an alternate way to represent a vector

A= a x Ax a y A y az A z
(35)

Later  we will  consider  vectors  in cylindrical,  spherical,  and
other  coordinate  systems. In  these cases  the unit  coordinate
vectors might be functions of position.

Multiplying a vector by a scalar results in the components of
the vector being multiplied by the scalar

k A=(kAx , kA y , kAz) (36)

Dot product

There  are  two  useful  ways  to  combine  vectors  through
multiplication. The dot product produces a scalar

A⋅B  = Ax Bx+A y By+ Az B z (37)

In terms of magnitudes we have

A⋅B  = A B cosθAB (38)

where θAB  is the angle between the vectors.

If  A⋅B=0  for  two  non-zero  vectors,  we  say  they  are
orthogonal. Since A≠0, B≠0 , we must have cosθAB=0 , or

θAB=π/2=90o .

Cross product

The cross product of two vectors produces another vector. 

A×B  = â x (Ay Bz−Az B y)+  
â y( Az Bx−Ax B z)+ 
â z( Ax By−A y Bx)

(39)

Notice the permutations of  xyz from top to bottom. You can
use these to memorize the above formula. The cross product
A×B  is orthogonal to both  A and  B, and the magnitude of

the cross product is

∣A×B∣ =  A B sinθAB (40)

This is illustrated below.

The direction of the cross product is given by the “right hand
rule.” Point the fingers of your right hand in the direction of A.
Sweep your fingers to the director of B. Your right thumb then
points in the direction of A×B .

The  cross  product  is  zero  if  θAB=0,π ,  that  is,  if  the  two
vectors are parallel. 

Normal and tangential components

We are often interested in the orientation of a vector relative to
some surface. Assume the surface normal is â n . This is a unit
vector which is perpendicular to the surface. We can break a
vector A into normal and tangential components

A=An+At (41)

where
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An=â n(A⋅â n)

At=A−An= ân×A×â n

(42)

This is illustrated below.

Note  that  the  substitution  an−an
 leaves  An ,At

unchanged. Therefore, it doesn't matter in which direction we
define the surface normal.

Scalar fields

A  scalar  field is  a  mapping  that  assigns  a  scalar  to  every
spatial position in some spatial domain. We denote this with an
expression of the form f (r) . In rectangular coordinates this
would  be  expressed  as  f ( x , y , z) .  A  scalar  field  can  be
complex in which case we represent it as the sum of its real
and imaginary parts

f (r)= f r(r)+ j f i(r) (43)

A scalar  field, either real or complex, can also be a function of
time. We then write  f (r ; t ) .  This means that at any given
point  r0  the  field  is  a  function  of  time  given  by
g (t )= f (r 0; t) . If at every point in space the field is a real

sinusoidal function of time with radian frequency ω  then we
can apply the phasor concept.  The result is a  scalar phasor
field f (r)  where

f (r; t )=Re { f (r)e jω t} (44)

Vector fields

A  vector  field is  a  mapping  that  assigns  a  vector  to  every
spatial position in some spatial domain, and we write A (r) .
Breaking this into rectangular components we have

    A (r)=â x Ax (x , y , z)+â y Ay( x , y , z)+ âz Az (x , y , z) (45)

A vector field defines three scalar fields, one for each vector
component. The scalar fields, and therefore the vector field,
may be complex. We may employ a  coordinate system other
than  rectangular  coordinates.  We  will  consider  general
orthogonal coordinate systems in a subsequent lecture.

We  can  combine  the  vector  field  concept  with  the  phasor

concept to arrive at a vector phasor field. In this case

A (r ; t )=Re {A (r)e j ωt } (46)

An example is

A (r ; t)=Re {â x A0e j ϕe− jβ z e jω t}
= âx A0 cos(ωt−β z+ϕ) (47)

where we assume A0  is real.

We will  almost  always  represent  the  electric  and  magnetic
fields as vector phasor fields. Indeed, most of this course will
involve manipulations of, and relations between, vector phasor
fields. 

Time-average dot product

Consider  two  time-varying,  real  vectors  representing  some
physical fields

  (Ax cos (ω t+ϕx) , Ay cos (ωt+ϕ y) , A z cos (ω t+ϕ z)) (48)

and

    (Bx cos(ω t+θx ) , B y cos(ω t+θ y) , B z cos (ω t+θ z)) (49)

The dot product is

Ax Bx cos (ω t+ϕx )cos(ω t+θx)+

Ay By cos (ω t+ϕ y)cos(ωt+θ y)+

A z B z cos(ωt+ϕz)cos(ωt+θz)     
(50)

In most EM problems it is the time-average of such quantities
that are usually of interest. Using a basic trig identity

Ax B x cos (ω t+ϕx)cos (ω t+θx )

     =
1
2

Ax Bx [cos(ϕx−θ x)+cos (2ωt+ϕx+θ x)]
(51)

Time-averaging  will  eliminate  the  last  term.  So  the  time-
average dot product is

Ax B x

2
cos(ϕx−θ x)+

Ay B y

2
cos (ϕ y−θ y )+

A z Bz

2
cos(ϕz−θz)

(52)

The corresponding phasors are

A=(Ax e jϕx , A y e j ϕy , Az e j ϕz) (53)

B=(Bx e jθ x , By e jθ y , B z e j θz) (54)

By inspection we can verify that the time-average dot product
we derived above is equal to

1
2

Re (A⋅B∗)=
1
2

Re (A∗
⋅B ) (55)

Therefore,  when  expressions  like  1/2 Re (A⋅B∗ ) ,  where  A
and  B are vector phasors, comes up in our analysis, we can
identify this  as  the  time-average  of  the  dot  product  of  the
corresponding real, physical fields that the phasors represent.
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Figure  3: Components of  a
vector  normal  and  tangent
to a surface.
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Line, surface and volume integrals

Two important integration operations that can be performed on
a vector field are line integrals and surface integrals. Suppose
we have a vector field A and we define a path L between two
points P1, P2 , as shown below.

The  line  integral  of  A over  path  L is  a  scalar  denoted  by

∫L
A⋅dl . The integrand is

A⋅dl=Ax dx+Ay dy+A z dz (56)

The displacement  dl is tangent to the curve.  If the path is a
closed path ( P1=P2 ) then we use the notation ∮L

A⋅dl .

Now suppose we define some surface  S, as illustrated below.
The  surface  integral  of  A over  S is  a  scalar  denoted  by

∬S
A⋅ds . The integrand is

A⋅ds=A⋅ân dS=An ds (57)

The vector  ds is normal to the surface and has area  ds. The
surface  integral  sums the  normal  component  of  A over  the
surface. If the surface is a closed surface, we use the notation

∯S
A⋅ds .

Finally,  a  volume  integral  of  a  scalar  field  is  denoted  by

∭V
f dv .

Useful vector identities

The following identities can be readily verified by carrying out
the indicated operations in rectangular coordinates.

A×B  =  −B×A (58)

A×(B×C)=(A⋅C)B−(A⋅B)C (59)

A⋅(B×C)=B⋅(C×A)=C⋅(A×B) (60)

â n⋅(A×B)= ân⋅(A t×Bt) (61)

This last identity says that the normal component of a cross
product  is  equal  to  the  cross  product  of  the  tangential
components.
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Figure 5: Surface integral.
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