Lecture 19

Sliding DFT

Definition

Given N samples $x(m), 0 \leq m \leq N-1$, the N-point DFT is defined as

$$
\begin{equation*}
X_{k}=\sum_{m=0}^{N-1} x(m) W_{N}^{k m} \tag{1}
\end{equation*}
$$

with $W_{N}=e^{-j \frac{2 \pi}{N}}$. In this lecture we will be using a subscript instead of parentheses to represent the frequency bin; we will write X_{k} instead of $X(k)$. We reserve parentheses for a time index.
Now, imagine we have eight samples in $x(n)$, but only want to perform a 4-point DFT. There are five sets of four adjacent samples (Fig. 1) we can perform the DFT on. We use the notation

$$
\begin{equation*}
X_{k}(n)=\sum_{m=0}^{N-1} x(n+m) W_{N}^{k m} \tag{2}
\end{equation*}
$$

to represent the amplitude of the $k^{\text {th }}$ frequency bin of the DFT calculated using samples $n \leq m \leq n+N-1$. We call $X_{k}(n)$ a sliding $D F T$ (SDFT).

Iterative calculation

Consider a five-point DFT. Starting at time $n=0$ we have

$$
\begin{equation*}
X_{k}(0)=x(0) W_{5}^{k 0}+x(1) W_{5}^{k 1}+x(2) W_{5}^{k 2}+x(3) W_{5}^{k 3}+x(4) W_{5}^{k 4} \tag{3}
\end{equation*}
$$

For the next time step $n=1$ we have

$$
\begin{equation*}
X_{k}(1)=x(1) W_{5}^{k 0}+x(2) W_{5}^{k 1}+x(3) W_{5}^{k 2}+x(4) W_{5}^{k 3}+x(5) W_{5}^{k 4} \tag{4}
\end{equation*}
$$

At each time step we have to do four multiplications ($W_{5}^{k 0}=1$ doesn't count) and four additions for each frequency index k. However, look at the $x(2)$ terms in (3) and (4). In the first case the

Fig. 1: Sliding DFT. Circles represent samples $x(0), x(1), \ldots, x(7)$. From a given starting sample we perform a 4-point DFT to obtain X_{0}, \ldots, X_{3}. There are five possible DFTs for this set of samples: $X_{k}(0), X_{k}(1), \ldots, X_{k}(4)$.
coefficient is $W_{5}^{k 2}$ while in the second it is $W_{5}^{k 1}$. These are related by $W_{5}^{k 1}=W_{5}^{-k} W_{5}^{k 2}$. Now look at the $x(3)$ terms. These are $W_{5}^{k 3}$ and $W_{5}^{k 2}$ and the relation is $W_{5}^{k 2}=W_{5}^{-k} W_{5}^{k 3}$. Likewise the $x(4)$ terms have coefficients related by $W_{5}^{k 3}=W_{5}^{-k} W_{5}^{k 4}$. This structure is apparent if we rewrite the DFTs starting with the common samples

$$
\begin{align*}
& X_{k}(0)=\left[x(1) W_{5}^{k 1}+x(2) W_{5}^{k 2}+x(3) W_{5}^{k 3}+x(4) W_{5}^{k 4}\right]+x(0) W_{5}^{k 0} \tag{5}\\
& X_{k}(1)=\left[x(1) W_{5}^{k 0}+x(2) W_{5}^{k 1}+x(3) W_{5}^{k 2}+x(4) W_{5}^{k 3}\right]+x(5) W_{5}^{k 4}
\end{align*}
$$

Since

$$
\begin{align*}
& W_{5}^{-k}\left[x(1) W_{5}^{k 1}+x(2) W_{5}^{k 2}+x(3) W_{5}^{k 3}+x(4) W_{5}^{k 4}\right] \tag{6}\\
& \quad=\left[x(1) W_{5}^{k 0}+x(2) W_{5}^{k 1}+x(3) W_{5}^{k 2}+x(4) W_{5}^{k 3}\right]
\end{align*}
$$

we can write

$$
\begin{equation*}
W_{5}^{-k} X_{k}(0)=\left[x(1) W_{5}^{k 0}+x(2) W_{5}^{k 1}+x(3) W_{5}^{k 2}+x(4) W_{5}^{k 3}\right]+W_{5}^{-k} x(0) \tag{7}
\end{equation*}
$$

All the bracketed terms appear in the expression for $X_{k}(1)$. We need only subtract the last term here and add in the last term of the expression for $X_{k}(1)$ to get

$$
\begin{equation*}
X_{k}(1)=W_{5}^{-k} X_{k}(0)-W_{5}^{-k} x(0)+x(5) W_{5}^{k 4} \tag{8}
\end{equation*}
$$

Writing

$$
\begin{equation*}
W_{5}^{k 4}=W_{5}^{k(5-1)}=W_{5}^{-k} W_{5}^{k 5}=W_{5}^{-k} \tag{9}
\end{equation*}
$$

where we have used $W_{5}^{k 5}=e^{-j \frac{2 \pi}{5} k 5}=e^{-j 2 \pi k}=1$ we obtain

$$
\begin{equation*}
X_{k}(1)=W_{5}^{-k}\left[X_{k}(0)-x(0)+x(5)\right] \tag{10}
\end{equation*}
$$

Given $X_{k}(0)$ we need only an addition, a subtraction and one multiplication to obtain $X_{k}(1)$. This is a significant computational savings.
The general formula for arbitrary N and time index is

$$
\begin{equation*}
X_{k}(n+1)=W_{N}^{-k}\left[X_{k}(n)-x(n)+x(n+N)\right] \tag{11}
\end{equation*}
$$

At time step n this expression involves the future sample $x(n+N)$. Typically we prefer to deal with causal systems in which the present does not depend on the future. Subtracting N from all time indices (which is equivalent to shifting the time axis) we obtain

$$
\begin{equation*}
X_{k}(n+1-N)=W_{N}^{-k}\left[X_{k}(n-N)-x(n-N)+x(n)\right] \tag{12}
\end{equation*}
$$

Defining

$$
\begin{equation*}
y(n) \stackrel{\text { def }}{=} X_{k}(n+1-N) \tag{13}
\end{equation*}
$$

we have

$$
\begin{equation*}
y(n)=e^{j \frac{2 \pi}{N} k}[y(n-1)+x(n)-x(n-N)] \tag{14}
\end{equation*}
$$

The present output depends on the previous output, the current input and the input from N time steps ago. Note that we don't explicitly reference the frequency bin k, but it's implicit in the exponential expression.

Taking z transforms we have

$$
\begin{equation*}
Y(z)\left[1-e^{j \frac{2 \pi}{N} k} z^{-1}\right]=e^{j \frac{2 \pi}{N} k} X(z)\left[1-z^{-N}\right] \tag{15}
\end{equation*}
$$

So, the frequency response is

$$
\begin{equation*}
H(\omega)=\frac{1-e^{-j N \omega}}{e^{-j \frac{2 \pi}{N k}}-e^{-j \omega}} \tag{16}
\end{equation*}
$$

This expression is undefined at $\omega=2 \pi k / N$ where it has a $0 / 0$ form. The limiting value is

$$
\begin{equation*}
\lim _{\omega \rightarrow \frac{2 \pi}{N} k} H(\omega)=N e^{j \frac{2 \pi}{N} k} \tag{17}
\end{equation*}
$$

Exercise 1: Prove (17) using L'Hospital's rule.
Let's assume $x(n<0)=0$. We start with

$$
\begin{equation*}
y(0)=e^{j \frac{2 \pi}{N} k} x(0) \tag{18}
\end{equation*}
$$

Then for $n=1,2, \ldots, N-1$ we set

$$
\begin{equation*}
y(n)=e^{j \frac{2 \pi}{N} k}[y(n-1)+x(n)] \tag{19}
\end{equation*}
$$

Finally for $n \geq N$ we have

$$
\begin{equation*}
y(n)=e^{j \frac{2 \pi}{N} k}[y(n-1)+x(n)-x(n-N)] \tag{20}
\end{equation*}
$$

