
Lecture 18
Fast Fourier Transform

Overview
Using the Discrete Fourier Transform (DFT) we can represent an N-point signal x (n) as a
superposition of complex exponentials, or equivalently as a superposition of sinusoids.

However, on the order of N 2 operations are required to compute the DFT, and for large N this
presents a substantial computational burden. What makes the DFT practical for DSP applications
is that we can exploit the properties of its complex-exponential factors to reduce the
computational requirements to on the order of N log2 N . The corresponding speed up is on the
order of N / log2 N . For N=1024 this is about a factor of 100, a tremendous improvement. An
algorithm for this more efficient calculation of the DFT is called a Fast Fourier Transform
(FFT). In this lecture we develop the Cooley-Tukey FFT algorithm.

DFT computation requirements
The DFT of a signal x (n) ,0≤n≤N−1 is

X (k)=∑
n= 0

N −1

x (n)e
− j 2π

N
k n

,0≤k≤N−1 (1)

Consider what is involved in calculating this. For each of the N values of k, and then for each of
the N values of n we have to

• calculate e
− j 2π

N
k n

=cos (2π k n/ N)− j sin(2π k n / N) (two trig function evaluations)

• perform the multiplication x (n)e
− j 2π

N
k n

= x(n)cos (2π k n / N)− j x (n)sin (2π k n/ N)
(which takes two real multiplications, assuming x is real)

• add the result to X (k) (which takes two real additions, one for the real part and one for
the imaginary part)

A brute-force calculation of (1) therefore requires approximately 2 N 2 trig function evaluations,
2 N 2 real multiplications, and 2 N 2 real additions.

We could, in principle, precalculate the trig functions and store the N distinct values of e
− j 2π

N
k n

in an array instead of calculating trig functions for every term of (1). But even then, we would
still have O(N 2) multiplications and additions to perform. In the appendix is a Scilab function
dft1() that calculates (1) directly. For N=1024 it requires about 10 seconds to execute.
Suppose this was applied to an audio signal with sampling frequency F s=8 kHz . Since
1024/8000=0.128 these 1024 samples would occupy a 128 ms window. If a 128-ms segment
of data requires 10 sec to process there is no way we could use the DFT to perform realtime
audio DSP with Scilab.

EE 464 Scott Hudson 2018-06-12

Lecture 18 Fast Fourier Transform 2/7

Also in the appendix is a Scilab function fft1() that implements the FFT algorithm we will
derive in this lecture. For N=1024 it requires only about 23 ms to execute. This is much less
than the duration of the window, implying that we could use this routine for realtime DSP. It’s
the potential for such a dramatic speed up that we want to understand.

Properties of complex exponential factors
Using the short-hand notation

W N=e
− j 2π

N (2)

(1) can be written

X (k)=∑
n=0

N −1

x (n)W N
k n (3)

Since k and n are integers, m= k n is also, and we can write W N
k n=W N

m . It’s the special

properties of the complex exponentials W N
m that enable us to develop the FFT algorithm.

First let’s see how many distinct values of W N
m there are. Since

W N
m±N=W N

±N W N
m=e

− j 2π
N

(±N)
W N

m =W N
m (4)

W N
m is periodic in m with period N, so it has only N distinct values

W N
m , 0≤m≤N−1 (5)

Because |e jϕ|=1 these N values fall on the unit circle of the complex plane (Fig. 1).

W N
0 =1 ,W N

N / 2=−1 ,W N
N /4=− j (6)

W N
2m=W N /2

m (7)

EE 464 Scott Hudson 2018-06-12

Fig. 1: The 16 distinct values of W 16
m can be expressed in terms of 1 , j ,W 16 ,W 8 .

W 16
0

W 16
1

W 16
2

W 16
3

W 16
4

1

− j

W 16

W 8

j

−1

W 16
*

jW 16
*

− jW 16
*

−W 16
*

−W 8

−W 8
*

W 8
*

−W 16

− jW 16

jW 16

W 16
5

W 16
6

W 16
7

W 16
8

W 16
9

W 16
10

W 16
11 W 16

12

W 16
13

W 16
14

W 16
15

Lecture 18 Fast Fourier Transform 3/7

Δ θ=
2π
N

=
360o

N

Key to the FFT is the fact that W N
k n can always be expressed in terms of the factors W N

k , W N /2
k

, W N /4
k , etc. To do this we express n as a sum of powers of 2, separate factors of the form W N

k 2 p

and use

W N
k 2 p

=W N /2 p

k (8)

For example, suppose we want to calculate W 16
k 7 . We write 7=4+ 2+ 1 to obtain

W 16
k 7=W 16

k 4 W 16
k 2 W 16

k 1=W 4
k W 8

k W 16
k (9)

 z= x+ j y
 z*= x− j y
−z*=−x+ j y

(10)

Cooley-Tukey algorithm
The first and probably still the most commonly applied FFT algorithm was published by Cooley
and Tukey in 1965 during the early years of DSP development. We will limit consideration to the
case where N is a power of 2. The algorithm can be extended to other values of N at the cost of
greater complexity. To motivate the algorithm we will explicitly work out the cases N=2, 4, 8
and then generalize to the case N=2p .

N = 2

For N=2 (3) becomes

X (k)= x(0)+ x (1)W 2
k (11)

There are two distinct values of W 2
k ,

W 2
0=1 ,W 2

1=−1 (12)

which can be expressed as

W 2
k=(−1)k (13)

Therefore (11) can be written

X (k)= x(0)+ (−1)k x (1) (14)

and we have

X (0)= x (0)+ x (1)
X (1)= x (0)− x(1)

(15)

Let’s call (15) the “2-point DFT.” It can be represented as a signal-flow diagram as shown at left
in Fig. 2. This operation is sometimes called a butterfly due to the appearance of its signal-flow
diagram.

EE 464 Scott Hudson 2018-06-12

Lecture 18 Fast Fourier Transform 4/7

N = 4

For N=4 (3) is

X (k)= x(0)+ x (1)W 4
k+ x (2)W 4

k 2+ x (3)W 4
k 3 (16)

Decomposing the W factors as

W 4
k 2=W 2

k=(−1)k

W 4
k 3=W 4

k 2W 4
k=W 2

k W 4
k=(−1)k W 4

k
(17)

we have

X (k)= x(0)+ x (1)W 4
k+ (−1)k x (2)+ (−1)k x (3)W 4

k (18)

Two terms have a common factor W 4
k . Combining them we arrive at

X (k)= [x(0)+ (−1)k x (2)]+ W 4
k [x (1)+ (−1)k x(3)] (19)

for 0≤k≤3 . The expressions in brackets are butterflies (2-point DFTs). We see that a 4-point
DFT can be written as a combination of 2, 2-point DFTs with twiddle factors W 4

k . The first
butterfly operates on the even indices 0 and 2 while the second operates on the odd indices 1 and
3.

xe (0)= x (0) , xe(1)= x (2)
xo(0)= x (1) , xo(1)= x (3)

X e(k)= xe(0)+ (−1)k xe (1)
X o(k)= xo(0)+ (−1)k xo(1)

For 0≤k≤1

 X (k)= X e(k)+ W 4
k X o(k)

X (k+ 2)= X e(k)−W 4
k X o(k)

EE 464 Scott Hudson 2018-06-12

Fig. 2: 2-point (left) and 4-point (right) FFTs. Computation flows
from left to right. Unlabeled arrows denote negation (multiplication
by -1). Labeled arrows denote multiplication by the listed factor.
Two branches joining at a node are summed.

x0

x1

X 0

X 1

x0

x2

x1

x3

X 0

X 2

W 4

X 3

X 1

Lecture 18 Fast Fourier Transform 5/7

N = 8

X (k)= x (0)+ x (1)W 8
k+ x(2)W 8

k 2+ x (3)W 8
k 3

 + x(4)W 8
k 4+ x (5)W 8

k 5+ x (6)W 8
k 6+ x (7)W 8

k 7

W 8
k 2=W 4

k

W 8
k 3=W 8

k 2W 8
k=W 4

k W 8
k

W 8
k 4=(−1)k

W 8
k 5=W 8

k 4W 8
k=(−1)k W 8

k

W 8
k 6=W 8

k 4W 8
k 2=(−1)k W 4

k

W 8
k 7=W 8

k 4W 8
k 3=(−1)k W 4

k W 8
k

X (k)= x (0)+ x (1)W 8
k+ x(2)W 4

k+ x (3)W 4
k W 8

k

 + (−1)k [x(4)+ x(5)W 8
k+ x (6)W 4

k+ x(7)W 4
k W 8

k]
Four terms have a common factor W 8

k . Combining these we find

X (k)=[x (0)+ x (2)W 4
k+ (−1)k x (4)+ (−1)k x (6)W 4

k]
 + W 8

k [x (1)+ x (3)W 4
k+ (−1)k x (5)+ (−1)k W 4

k x (7)]
(20)

Comparing each of the bracketed expressions to (18) we see that an 8-point DFT can be
expressed as a combination of 2, 4-point DFTs. The first involves the even indices while the
second involves the odd indices. Those 4-point DFTs in turn can be expressed as combinations
of 2-point DFTs.

xe (0)= x (0) , xe(1)= x (2) , xe(2)= x (4) , xe(3)= x(6)
xo(0)= x (1) , xo(1)= x (3) , xo(2)= x (5) , xo(3)= x (7)

EE 464 Scott Hudson 2018-06-12

Fig. 3: Eight-point FFT.

x0

x4

x2

x6
W 4

x1

x5

x3

x7
W 4

W 8
2

W 8

W 8
3

X 0

X 1

X 2

X 3

X 4

X 5

X 6

X 7

Lecture 18 Fast Fourier Transform 6/7

 X (k)= X e (k)+ W 4
k X o(k)

X (k+ 4)= X e(k)−W 8
k X o(k)

We are seeing a pattern that suggests that an N-point DFT can be calculated by combining the 2,
N / 2 -point DFTs of the even and odd index terms with the twiddle factors W N

k .

N = 2 p

For the general case N=2p the DFT is

X (k)=∑
n=0

N −1

x (n)W N
k n

Let’s define the sequence of even-index and odd-index elements of x (n) as

xe (m)= x(2 m)
xo(m)=x (2 m+1)

with 0≤m≤N /2−1 . Using these definitions we can put the DFT in the form

X (k)= ∑
m=0

N /2−1

xe(m)W N
k (2 m)+ ∑

m=0

N /2−1

xo(m)W N
k(2m+ 1)

= ∑
m=0

N /2−1

xe(m)W N /2
k m + W N

k ∑
m=0

N /2−1

xo(m)W N /2
k m

The summations are each N / 2 -point DFTs. Let’s denote these by

X e(k)= ∑
m=0

N /2−1

xe(m)W N /2
k m

X o(k)= ∑
m= 0

N /2−1

xo(m)W N /2
k m

These are periodic; X e (k+ N / 2)=X e (k) and X o(k+ N /2)= X o(k) .

X (k)= X e(k)+ W N
k X o(k) , 0≤k≤N−1

Since W N
k+ N /2=W N

N /2 W N
k =−W N

k for 0≤k≤N /2−1

 X (k)= X e (k)+ W N
k X o(k)

X (k+ N /2)= X e(k)−W N
k X o(k)

EE 464 Scott Hudson 2018-06-12

Lecture 18 Fast Fourier Transform 7/7

References
1. https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm

Appendix – Scilab code

//all times using Scilab on Windows 10 with Intel i5-3210M @ 2.5GHz

//brute-force DFT
//takes about 10 sec for N=1024
function X = dft1(x)
 N = length(x);
 for k=0:N-1
 X(k+1) = x(1);
 q = -%i*2*%pi*k/N;
 for n=1:N-1
 X(k+1) = X(k+1)+exp(q*n)*x(n+1);
 end
 end
endfunction

//recursive FFT
//takes about 23 millisec for N=1024
function X = fft1(x)
 N = length(x);
 if (N==2)
 X = [x(1)+x(2),x(1)-x(2)];
 else
 Xe = fft1(x(1:2:N-1));
 Xo = fft1(x(2:2:N));
 k = [0:N/2-1];
 Wk = exp(-%i*2*%pi*k/N);
 WkXo = Wk.*Xo;
 X = [Xe+WkXo,Xe-WkXo];
 end
endfunction

//built-in FFT
//takes about 92 microsec for N=1024
X = fft(x);

EE 464 Scott Hudson 2018-06-12

https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm

	Overview
	DFT computation requirements
	Properties of complex exponential factors
	Cooley-Tukey algorithm
	N = 2
	N = 4
	N = 8
	N = 2 p

	References
	Appendix – Scilab code

