
Lecture 16
Filter implementation

Introduction

MiniDSP
The MiniDSP 2x4 [1] is “a low cost Digital Signal Processor for audio applications” based on
the Analog Devices ADAU1701 chip (Fig. 1). We will use this as an example dedicated DSP
system.

The MiniDSP allows the user to enter IIR filter coefficients in terms of cascaded “biquads”
which we now turn to.

Filter represented as a cascade of biquads
The general rational transfer function

H (z)=
b0+b1 w+b2 w2+⋯bM wM

1+a1 w+a2 w2+⋯+a N wN (1)

is the ratio of two polynomials in w=z−1 . A polynomial in w can always be factored, for
example,

b0+b1 w+b2 w2+⋯bM wM=bM (w−ζ1)(w−ζ2)⋯(w−ζM) (2)

Two factors of real roots can be combined into a single quadratic using

(w+a)(w+b)=w2+(a+b)w+ab (3)

while the product of two conjugate-root factors is the quadratic

(w+σ+ j ω)(w+σ− j ω)=w2+2σ w+(σ2+ω2) (4)

It follows that (1) can always be written as a product of biquadratic factors (“biquads”)

EE 464 Scott Hudson 2018-06-11

Fig. 1: MiniDSP 2x4 [1].

Lecture 16 Filter implementation 2/6

H (z)=
b10+b11 w+b12w2

1+a11 w+a12 w2

b20+b21 w+b22 w2

1+a21w+a22 w2 ⋯ (5)

which can be implemented as a cascade of 2nd order blocks (Fig. 2)

Fig. 2: Cascade of 2nd order systems.

The output of one block becomes the input to the next block. For the kth block

yk (n)=b0 k xk (n)+b1k xk (n−1)+b2k xk (n−2)−a1k yk (n−1)−a2 k y k (n−2) (6)

In some implementations (including the MiniDSP) the minus signs associated with a1k , a2k are
considered inconvenient. We will define

ā1k=−a1 k

ā2k=−a2 k

(7)

so that (6) becomes

yk (n)=b0 k xk (n)+b1 k xk (n−1)+b2 k xk (n−2)+ ā1 k yk (n−1)+ ā2k yk (n−2) (8)

Lowpass biquads
The 2nd order Butterworth prototype is

H p(s)=
1

1+cs+s2
(9)

with c a constant. This is transformed into a discrete lowpass filter by the transformation

H (z)=H p(α 1−w
1+w) (10)

with w=z−1 and α=1/ tan (π f c) . The result is

H (z)=
1

1+c α 1−w
1+w

+α2 (1−w)2

(1+w)2

= (1+w)2

(1+w)2+c α(1−w)(1+w)+α2(1−w)2

= 1+2w+w2

(1+cα+α2)+2(1−α2)w+(1−cα+α2)w2

(11)

Typically we want to scale the filter coefficients so that a0=1 . This leads to

a0=1 , a1=
2(1−α2)

(1+cα+α2)
, a2=

(1−cα+α2)
(1+cα+α2)

(12)

and

EE 464 Scott Hudson 2018-06-11

x(n)
b01 , b11 , b21

a 11 , a 21

b02 , b12 , b22

a12 , a22

y 1(n)

x2(n)

y 2(n)

⋯ y (n)

Lecture 16 Filter implementation 3/6

b0=b2=
1

1+c α+α2 , b1=2 b0 (13)

For higher-order filters we perform these same operations for each quadratic factor. Here’s an
example.

Example 1: Design a lowpass filter with cutoff frequency F c=1 kHz based on a
4th order Butterworth prototype. Implement it as a product of biquads. The
sampling frequency is F s=48kHz .

The discrete cutoff frequency is f c=1/48=0.02083 and

α=
1

tan(π f c)
=15.28

The prototype filter is

H p(s)=
1

(1+c1 s+s2)(1+c2 s+s2)

with c1=0.7654 , c2=1.848 . For the 1st biquad the coefficients are

b0=b2=
1

1+c α+α2 =0.004062, b1=2b0=0.008124

a0=1 , a1=
2(1−α2)

(1+cα+α2)
=−1.889 , a2=

(1−c α+α2)
(1+c α+α2)

=0.9050

For the 2nd biquad the coefficients are

b0=b2=
1

1+c α+α2 =0.003806,b1=2b0=0.007613

a0=1 , a1=
2(1−α2)

(1+cα+α2)
=−1.770 , a2=

(1−cα+α2)
(1+c α+α2)

=0.7850

The filter realization is

H (z)=
0.004062+0.008124 z−1+0.004062 z−2

1−1.889 z−1+0.9050 z− 2

 ×0.003806+0.007613 z−1+0.003806 z−2

1−1.770 z−1+0.7850 z−2

Exercise 1: Design a lowpass filter with cutoff frequency F c=2kHz based on a
2nd order Butterworth prototype. Implement it as a biquad. The sampling
frequency is F s=8kHz .

Answer: H (z)=
0.2929+0.5858 z−1+0.2929 z−2

1+0.1716 z−2

EE 464 Scott Hudson 2018-06-11

Lecture 16 Filter implementation 4/6

This procedure can be automated. Scilab code to do this appears in the Appendix. Copying and
pasting the output into the MiniDSP user interface and calculating the frequency response
produces the result shown in Fig. 3.

Hardware implementation
Let’s consider the details of implementing a single biquad

y (n)=b0 x (n)+b1 x (n−1)+b2 x (n−2)+ā1 y(n−1)+ā2 y (n−2) (14)

To start let’s consider the FIR version

y (n)=b0 x (n)+b1 x (n−1)+b2 x (n−2) (15)

A straight-forward implementation of this is shown in Fig. 4.

Here the z−1 blocks represent delays (memory registers), the ⋅b blocks are multipliers and the
+ blocks are two-input adders. We can extend this idea to the IIR biquad (14) to arrive at the so-
called Direct Form I implementation shown in Fig. 5.

EE 464 Scott Hudson 2018-06-11

Fig. 3: MiniDSP plugin. Sixteenth-order Butterworth lowpass filter entered as cascade of eight biquads.

Fig. 4: Direct implementation of (15).

z−1

⋅b2

⋅b1

⋅b0

+

+

z−1

x (n)

x (n−1)

x (n−2)

b0 x (n)
+b1 x (n−1)
+b2 x (n−2)

Lecture 16 Filter implementation 5/6

This requires 4 delays, 5 multipliers and 4 adders. Now, consider the so-called Direct Form II
implementation shown in Fig. 6.

This requires 2 fewer delays than the Direct Form I version. To verify that it results in the same
input-output relation, define w (n) as shown. Then

w (n)= x(n)+ā1 w(n−1)+ā2 w(n−2) (16)

and

y (n)=b0 w(n)+b1 w (n−1)+b2 w(n−2) (17)

The z transform of (16) is (recall ā1=−a1 and ā2=−a2)

W (z)=(−a1 z−1−a2 z−2)W (z)+ X (z) (18)

so

W (z)=
1

1+a1 z−1+a2 z−2 X (z) (19)

The z transform of (17) is

Y (z)=(b0+b1 z−1+b2 z−2)W (z) (20)

Combining (19) and (20) we have

Y (z)=
b0+b1 z−1+b2 z−2

1+a1 z−1+a2 z−2 X (z) (21)

which is the desired biquad transfer function.

References
1. https://www.minidsp.com/products/minidsp-in-a-box/minidsp-2x4

EE 464 Scott Hudson 2018-06-11

Fig. 5: Direct Form I implementation of (14).

z−1

⋅b2

⋅b1

⋅b0

+

+

z−1

⋅̄a1

⋅̄a2

+

+

z−1

z−1

x (n)

x (n−1)

x (n−2)

y (n)

y (n−1)

y (n−2)

Fig. 6: Direct Form II implementation of (14).

⋅b2

⋅b1⋅̄a1

⋅̄a2

+

z−1

z−1

+

+ +⋅b0x (n) y (n)
w(n)

https://www.minidsp.com/products/minidsp-in-a-box/minidsp-2x4

Lecture 16 Filter implementation 6/6

Appendix – MiniDSP lowpass filter generator
clear;
//
//miniDSPlowpassQuads.sce generates 8 sets of biquad coefficients
//in the format required by the MiniDSP "advanced" input window.
//Modify the following parameters as needed.
Fs = 48e3; //sampling frequency
fc = 1000/Fs;
N = 16; //order of prototype filter
//

function Bq = ButterworthQuads(n)
 s = poly(0,'s');
 kMax = floor(n/2);
 for k=1:kMax
 a = sin((2*k-1)*%pi/(2*n));
 Bq(k) = s^2+2*a*s+1;
 end
 if (modulo(n,2)) //odd order case
 Bq(k+1) = s+1;
 end
endfunction

alpha = 1/tan(%pi*fc);
Bq = ButterworthQuads(N);
nQuads = length(Bq);
for k=1:nQuads
 cs = coeff(Bq(k));
 c = cs(2);
 a = [1+c*alpha+alpha^2,2*(1-alpha^2),1-c*alpha+alpha^2];
 b = [1,2,1];
 b = b/a(1);
 a = a/a(1);
 mprintf("biquad%1d,\n", k);
 mprintf("b0=%f,\n",b(1));
 mprintf("b1=%f,\n",b(2));
 mprintf("b2=%f,\n",b(3));
 mprintf("a1=%f,\n",-a(2));
 mprintf("a2=%f,\n",-a(3));
end
for k=nQuads+1:8 //MiniDSP always expects 8 sets of biquad coeffs
 mprintf("biquad%1d,\n", k); //add y(n) = x(n) biquads as needed
 mprintf("b0=%f,\n",1);
 mprintf("b1=%f,\n",0);
 mprintf("b2=%f,\n",0);
 mprintf("a1=%f,\n",0);
 mprintf("a2=%f,\n",0);
end

EE 464 Scott Hudson 2018-06-11

	Introduction
	MiniDSP
	Filter represented as a cascade of biquads
	Lowpass biquads
	Hardware implementation
	References
	Appendix – MiniDSP lowpass filter generator

