
Lecture 15
Parametric filters

Introduction
A parametric filter is a filter in which the transfer function coefficients are specified in terms of
physically meaningful parameters such as center frequency, gain and bandwidth. In this lecture
we will limit consideration to the important special case of IIR  biquadratic filters, commonly
called biquads. These have transfer functions of the form

H (z)=
b0b1 z−1b2 z−2

a0a1 z−1a 2 z−2
(1)

Furthermore we will focus on  peaking filters which  boost or  cut the frequency response over
some narrow range of frequencies. 

Biquad peaking filters
The frequency response magnitude of a peaking filter (on a dB scale) looks something like that
illustrated in Fig. 1.

At most frequencies the response is nearly 0 dB, and the filter does not appreciably change these
frequency  components.  At  the  center  frequency  f 0  the  response  peaks  at  G dB  while  the
response drops to G/2 dB at f 0±Δ f . The effect of the filter is to boost frequency components
within about Δ f  of the center frequency. If  G is negative then the frequency components are
attenuated, or cut. 

Let’s define the linear-scale amplitude corresponding to G/2 dB as

A=10(G /2)/20

Then

A2=10G /20

is the amplitude at f 0 . We will take our filter specifications to be
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Fig. 1: Magnitude frequency response of peaking filter.
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               |H ( f 0)|= A2

     |H ( f 0±Δ f )|= A
|H (0)|=|H (0.5)|=1

(2)

This gives us five constraints on H ( f ) . Although H ( f )  has six coefficients, one of them is
arbitrary since we can always multiply numerator  and denominator by an arbitrary constant.
Therefore our five constraints should uniquely determine the frequency response of a biquad
filter. 

Multiplying the numerator and denominator of (1) by z results in the more symmetric expression

H (z)=
b0 zb1b2 z−1

a0 za1a2 z−1
(3)

Setting z= e j ω  gives us the frequency response

H (ω )=
b0 e j ω+ b1+ b2 e− jω

a0 e jω+ a1+ a2 e− jω (4)

If we define

mb=
b0+b2

2
,δb=

b0−b2

2
(5)

then we can write

b0=mb+δb , b2=mb−δb (6)

and the numerator can be expressed as

b0 e jω+ b1+ b2 e− jω=b1+ 2 mb cos ω+ j 2δb sinω (7)

Treating the denominator similarly we have

H (ω )=
b1+ 2mb cosω+ j 2δbsin ω
a1+ 2ma cosω+ j 2δa sinω

(8)

where

ma=
a0+a2

2
,δa=

a0−a2

2
(9)

Exercise 1: Verify (6) and (7).

The filter specs at f =0,0.5  ( ω=0,π ) require

b1+ 2mb

a1+ 2ma

=
b1−2mb

a1−2ma

=1

We can satisfy these by setting

a1=b1=c  , ma=mb=1 (10)

where c is some constant. The transfer function is now
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H (ω )=
c+ 2 cosω+ j 2δb sin ω
c+ 2 cosω+ j 2δa sin ω

(11)

At  ω=0 ,ω=π  the  imaginary  parts  of  the  numerator  and  denominator  vanish.  If  we  take
c=−2cos ω0  then the real parts of the numerator and denominator will vanish at ω=ω0 . Using
this value of c and dividing numerator and denominator by 2 results in

H (ω )=
(cos ω−cosω0)+ j δb sinω
(cosω−cosω0)+ j δa sinω

(12)

The frequency response at ω=ω0  is

H (ω0)=
j δb sinω0

j δa sinω0

=
δb

δa

(13)

Our specs require

δb

δa
=A2 (14)

Finally, we need to satisfy the specs at  f = f 0±Δ f . Multiplying numerator and denominator
by −1 /sin ω , and defining

u (ω)=
cos ω0−cos ω

sin ω
(15)

we can express the transfer function as

H (ω )=
u− j δb

u− j δa

(16)

The magnitude squared is

|H (ω )|2=
u2+ δb

2

u2+ δa
2

Note that u (ω0)=0 . Let u=±α  be the values of u where |H (ω)|=A  and |H (ω )|2=A2 . Then

α2+ δb
2

α2+ δa
2 = A2

Clear fractions

α2+ δb
2=A2(α 2+ δa

2)

Use (14) to write δb=A2 δa  resulting in

α2+ A4 δa
2= A2(α2+ δa

2)

Moving δa  terms to the left and α  terms to the right

(A4−A2)δa
2=( A2−1)α2

and solving for δa
2  gives us
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δa
2= A2−1

A4−A2
α2= α 2

A2

Finally we have

δa=
α
A

and

δb=A2 δa=α A

How does u=±α  relate to ω ? The first-order Taylor series of (15) is 

u=(ω−ω0)+⋯ (17)

Therefore

u=±α≈(ω−ω0)→ ω≈ω0±α (18)

and α=Δω=2 πΔ f .

Exercise 2: Verify that (15) has Taylor series (17).

In summary: to design a filter with given f 0 ,Δ f ,GdB  we calculate ω0=2π f 0 , α=2πΔ f ,

A=10GdB/40  and

δa=
α
A

 , δb=α A

Then the filter coefficients are

b0=1+ δb , b2=1−δb  , a0=1+ δa , a2=1−δa  , a1=b1=−2 cosω0 (19)

An alternate way to specify the bandwidth is using the Q factor

Q=
ω0

Δ ω =
f 0

Δ f
(20)

In terms of Q

Δ ω=
ω0

Q
,Δ f =

f 0

Q
(21)

For example, with Q=10  the bandwidth is 1/10 of the center frequency. In many applications
specifying  the  fractional  bandwidth  in  this  manner  is  more  useful  than  giving  an  absolute
bandwidth. 

A peaking  filter  with  G> 0dB  boosts frequencies  near  f 0  (Fig.  2);  a  peaking  filter  with
G< 0 dB  cuts frequencies  near  f 0  (Fig.  3).  In  audio  applications  this  can  be  useful  for
suppressing “booming” frequency components at the resonance frequencies of a room, speaker
cabinet, or musical instrument. An example is shown in Fig. 4. The original music has spectral
peaks near 6 kHz and 7.2 kHz due to, respectively, a tambourine and a cymbal. The tambourine
is considerably louder than the cymbal which gets lost in the mix. By applying a peaking filter
the tambourine volume was reduced by about 4 dB without significantly affecting the rest of the
music signal and balanced the tambourine and cymbal in the mix. 
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Fig. 2: Frequency response of peaking filter with f 0=0.25 ,α=2 π(0.01) , g=12 dB . Response magnitude is about
6 dB at f = f 0±0.01 . This filter “boosts” frequencies near f 0 . The filter Q is 25.

Fig. 3: Frequency response of peaking filter with f 0=0.2 ,α=2π(0.02) , g=−6dB . Response magnitude is about
-3 dB at f = f 0±0.02 . This filter “cuts” frequencies near f 0 . The filter Q is 10.
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Appendix – Scilab code
function [b,a] = PFquad(f0,df,GdB) //biquad peaking filter
  A = 10^(GdB/20); //linear gain at f0
  da = 2*%pi*df/sqrt(A);
  db = da*A;
  c = -2*cos(2*%pi*f0);
  b = [1+db,c,1-db];
  a = [1+da,c,1-da];
  b = b/a(1);
  a = a/a(1);
endfunction
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Fig.  4:  Peaking  filter  applied  to  music  to  reduce  a  spectral  peak  near  6  kHz  by  4  dB.  Parameters:
f 0=6kHz /44.1kHz , Δ f =60Hz /44.1 kHz  (Q=100) , G=−4dB . Dashed line is original spectrum. Solid line

is filtered spectrum. 
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