
Lecture 13

IIR filters 2

Introduction
In  the  previous  lecture  we  learned  how  to  design  analog  lowpass,  highpass,  bandpass  and
bandstop filters  based  on a  Butterworth  lowpass  prototype.  In  this  lecture  we learn  how to
convert an analog filter with transfer function  H a(s)  into an IIR discrete filter with transfer
function H (z ) . Our approach will be to find a transformation s=g (z )  that maps the unit circle
of the z plane, z=e j ω , onto the imaginary axis of the s plane, s= j Ω  (Fig. 1). Then

H (z )=H a(s )=H a( g (z )) (1)

will generate the desired discrete filter from the analog filter. 

Bilinear transformation
We seek a transformation

s=g (z ) (2)

with the property that for any z=e j ω  on the unit circle of the z plane, we will obtain s= j Ω  on
the imaginary axis of the s plane. That is

j Ω=g (e j ω) (3)

We want ω=0  to map to Ω=0 . Since z=e j 0=1 , this suggests that g ( z)  should have a zero
at  z=1 . It follows that  g ( z)  should have a factor  z−1 . We also want  ω→π/2  to map to
Ω→∞  and ω→−π/2  to map to Ω→−∞ . Since e± j π/2=−1 , this suggests that g ( z)  should
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Fig. 1: Mapping between z and s planes.
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have a pole at  z=−1 . It follows that  g ( z)  should have a factor  1/( z+1) . With these two
factors we have

s=g (z )=
z−1
z+1

(4)

Let’s see if this satisfies (3). We find

e j ω−1

e jω+1
=

e jω /2−e− jω /2

e j ω/2+e− jω /2 = j
sin (ω /2)
cos (ω /2)

= j tan(ω /2)= j Ω (5)

So  (3)  is  satisfied.  Moreover,  with  Ω=tan(ω/2)  the  interval  −π /2≤ω≤π/2  maps  onto
−∞≤Ω≤∞  with  ω=0  mapping  to  Ω=0 .  Therefore,  all  our  requirements  are  satisfied.
However, tan (ω/ 2)  is dimensionless while Ω  needs to have units of s−1 . We can rectify this
by adding a constant factor with these dimensions. Doing this, and multiplying (4) by z−1/ z−1

we arrive at

s=g (z )=
2
T

1−z−1

1+z−1
(6)

Here T is a constant with units of time and the factor of 2 is for convenience in what follows. By
expressing  g ( z)  in terms of  z−1  (delay operator) rather than  z (advance operator) we ensure
that the resulting H (z )  will represent a causal system. The resulting frequency mappings are 

Ω=
2
T

tan (ω/ 2)

F= 1
πT

tan(π f )
(7)

The relation between f and F is shown in Fig. 2. 
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Fig. 2: Analog frequency F vs. discrete frequency f with T=1sec .
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For small frequencies the approximation tan x≈x  results in F≈ f /T . If we take T=T s  to be
the sampling period, this is just the relation  F= f F s  between discrete-time and continuous-
time frequencies. 

Lowpass filter
To design an IIR lowpass filter we first choose a prototype H p(s )=1/ Bn(s ) . We then scale the
frequency variable to achieve the desired cutoff frequency

~s = s
Ω c

(8)

What value do we use for Ωc ? Let’s leave that question for later. Combining (8) and (6) we get

~s = 2
Ω c T

1−z−1

1+ z−1
(9)

At the cutoff frequency of the prototype filter,  ~s = j . Setting this to correspond to the digital
cutoff frequency f c  we have

j=
2

Ω c T
j tan(π f c) (10)

It follows that

2
Ω c T

=
1

tan(π f c)
(11)

and the transformation that converts a prototype filter into an IIR discrete lowpass filter is

H (z )=H p( 1
tan (π f c)

1− z−1

1+z−1) (12)

We didn’t have to specify  Ωc  directly.  Instead the quantity  2 /(Ωc T )  is  fixed by (11). And
example IIR frequency response is shown in Fig. 3.

Example 1: Design an IIR lowpass filter with cutoff frequency f c=0.1  based on
a 2nd order Butterworth prototype.

The prototype analog filter is H p(s )=
1

s2+2 a s+1
 with

a=−cos(3
π
4 )≈0.6498

Therefore

H (z )=
1

( 1
tan(0.1π)

1−z−1

1+z−1)
2

+a
1

tan(0.1π)
1−z−1

1+ z−1 +1
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We could do the algebra by hand to put H (z )  into standard form, but this can be conveniently
done with Scilab. Scilab code to calculate the  a and  b coefficients of an IIR lowpass filter is
given in the Appendix. 

Highpass filter
The highpass transformation

~s =
Ω c

s
(13)

is the inverse of the lowpass transformation (8). This suggests we simply invert (9).
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Fig. 4: 4th order IIR highpass filter with f c=0.2 .

Fig. 3: 4th order IIR lowpass filter with f c=0.2 .
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The transformation that converts a prototype filter into an IIR discrete highpass filter is then

H (z )=H p(tan(π f c)
1+ z−1

1−z−1) (14)

An example IIR highpass response is shown in Fig. 4. 

Linkwitz–Riley filter
FIR filters had the property that if hLP (n)  and hHP (n)  are FIR lowpass and highpass impulse
responses, with the same cutoff frequency and number of coefficients, then

hLP (n)+hHP(n)=δ(n) (15)

This is the perfect reconstruction property. It is very desirable in applications such as crossover
filters (Fig. 5) because it ensures that the treble and bass signals coming out of the tweeter and
woofer speakers will combine to precisely reproduce the original audio signal (assuming no other
EQ effects have been applied). 

IIR filters  do not have this property. We can see this by adding the transfer functions of the
lowpass and highpass filters shown in  Fig. 3 and  Fig. 4 and plotting the resulting frequency
response. The result is shown in Fig. 6. There is a 3-dB “bump” in the magnitude response at the
crossover  frequency.  This  is  not  acceptable as  it  would create  a  “booming” response at  this
frequency akin to that created by a resonant room structure or other undesirable acoustic effect.
In 1976 the Linkwitz-Riley filter was presented [Error: Reference source not found]. This is also
known as a Butterworth-squared filter. To generate a 4th order Linkwitz-Riley lowpass filter we
first  design  a  2nd order  Butterworth  lowpass  filter  with  transfer  function  H B

LP( z) .  Then the
Linkwitz-Riley filter transfer function is simply a cascade of two of the Butterworth filters

H LR
LP( z)=H B

LP (z ) H B
LP ( z) (16)

Since each Butterworth filters is 2nd order, the Linkwitz-Riley filter is 4th order. The same process
is used for the highpass filter

H LR
HP (z )=H B

HP( z) H B
HP(z ) (17)

The frequency response of the sum of 4th order Linkwitz-Riley lowpass and highpass filters is
shown in Fig. 7. The magnitude response is effectively flat at 0 dB. This is a great improvement
over the Butterworth crossover filters. However, it’s still not perfect reconstruction as the phase
response is not linear. 
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Fig. 5: Crossover filters.
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The deviation from perfect reconstruction is best seen by calculating the impulse response of the
filter shown in Fig. 7. This is shown in Fig. 8. The response is close to being a delayed impulse,
but is not precisely a delta function.

References
1. http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt  

2. https://en.wikipedia.org/wiki/Linkwitz%E2%80%93Riley_filter  
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Fig. 6: Frequency response of sum of IIR lowpass (Fig. 3) and highpass (Fig. 4) filter transfer functions (dB scale).

Fig. 7: Frequency response of sum of 4th order Linkwitz-Riley lowpass and highpass transfer functions (dB scale).
Note that the total variation of the magnitude response is less than 6⋅10−14dB  which is at the level of round-off
error.
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Appendix – Scilab code
function [b,a] = LPiir(fc,n) //lowpass IIR filter coefficients
  w = poly(0,'w');           //based on n-th order Butterworth
  u = ((1-w)/(1+w))/tan(%pi*fc);
  B = Butterworth(n);
  H = 1/horner(B,u);
  a = coeff(H(3));
  b = coeff(H(2))/a(1);
  a = a/a(1);
endfunction

function [b,a] = HPiir(fc,n) //highpass IIR filter coefficients
  w = poly(0,'w');           //based on n-th order Butterworth
  u = ((1+w)/(1-w))*tan(%pi*fc);
  B = Butterworth(n);
  H = 1/horner(B,u);
  a = coeff(H(3));
  b = coeff(H(2))/a(1);
  a = a/a(1);
endfunction
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Fig. 8: Impulse response of filter shown in Fig. 7.
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