
Lecture 11
Windowing

Introduction
We have learned how to design FIR filters to perform lowpass, highpass, bandpass and bandstop
operations. We can control the “steepness” of the transition from pass band to stop band with our
choice of the filter length. However, we’ve seen that the filter response is always plagued by the
Gibbs phenomena; there are “ripples” in both the pass and stop bands. The solution to the ripple
problem is  windowing which involves a trade-off between ripple magnitude and width of the
transition band. We will explore this trade-off by examining a few specific windows.

Effect of windowing on frequency response
The output y of a discrete LTI system is a convolution of the input x with an impulse response h

y (n)= ∑
k=−∞

∞

h (k )x (n−k ) (1)

This is expressed in the frequency domain as

Y (ω)=H (ω) X (ω)

where

H (ω )= ∑
n=−∞

∞

h (n)e− jωn

is the system frequency response.

Suppose  we multiply  the  impulse  response  by  a  window function  w (n)  to  produce  a  new
impulse response

hw(n)=w(n)h(n)

The corresponding frequency response is

H w(ω)= ∑
n=−∞

∞

hw(n)e− jωn= ∑
n=−∞

∞

w (n)h(n)e− j ωn

Express h(n)  as an inverse Fourier transform

H w(ω )= ∑
n=−∞

∞

w (n)[ 1
2π∫−π

π

H (α)e jα n dα]e− jω n

Change the order of summation and integration to get

H w(ω)=
1

2π ∫
−π

π

H (α)[ ∑n=−∞

∞

w(n)e− j (ω−α)n]dα

= 1
2π ∫

−π

π

H (α)W (ω−α)dα
(2)

where
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W (ω)= ∑
n=−∞

∞

w(n)e− j ω n (3)

is  the  Fourier  transform of  the  window.  The  frequency  response  of  the  windowed  impulse
response  is  the  convolution  of  the  non-windowed  (ideal)  response  with  the  response  of  the
window.

Selected windows
The topic of windows is extensive. Reference [1] gives a good overview of the subject. Here we
examine a few including the Hamming window which we will adopt as our default window for
the remainder of the course. 

Rectangular window

The rectangular window corresponds to simple truncation. It is the window we have implicitly
used in designing FIR filters so far. It’s definition is

w (n)={1 0≤n≤M
0  otherwise

(4)

This window and its frequency response are graphed in Fig. 1. The frequency response displays a
relatively narrow mainlobe centered on f =0 . If this was the only component in the frequency
response, its effect would be a smoothing or “blurring” of the ideal filter response. However,
there are also significant sidelobes, the first having amplitudes of about −13 dB . These are what
give rise to the Gibbs phenomena and make the rectangular window largely unacceptable for
practical filter design.

Triangular window

Assuming the discontinuity of the rectangular window at  n=0 ,M  is  the cause of the large
sidelobes, an obviously strategy is to adopt a window which, in some sense, “gradually” tapers to
zero at its left and right edges. 
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Fig. 1: (Left) rectangular window for M =40 . (Right) magnitude frequency response (normalized).
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The triangular window

w (n)={1−|n−M /2
M /2 | 0≤n≤M

0  otherwise
(5)

has a linear taper. This window and its frequency response are graphed in Fig. 2.

Two  things  stand  out  in  the  frequency  response  of  this  window relative  to  the  rectangular
window. First, the side lobes are much reduced in amplitude. Second, the main lobe is wider. We
seem to have traded off resolution for side-lobe suppression. 

Hann window

The Hann window

w (n)={1
2 [1−cos( 2πn

M )] 0≤n≤M

0  otherwise

(6)

is  type  of  “raised-cosine”  window (Fig.  3).  It  is  sometimes  mistakenly  called  a  “Hanning”
window, possibly due to confusion with the “Hamming” window we discuss below. It smoothly
transitions, in both amplitude and slope, to zero at its boundaries. Its response has a slightly
wider main lobe, but smaller sidelobes than the triangular window response. The first sidelobe
amplitude is about −32dB . Subsequent sidelobe amplitudes are even lower. 

Hamming window

The Hann window has a constant term and a cosine term, each with amplitude ½. The Hamming
window (Fig. 4) is essentially a Hann window in which these amplitudes have been adjusted to
suppress the first sidelobe of the frequency response. The required amplitudes are  25/ 46  and
21/ 46 , respectively
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Fig. 2: (Left) Triangular window for M =40 . (Right) Magnitude frequency response (normalized).



Lecture 11 Windowing 4/11

w (n)={25
46

−21
46

cos(2π n
M ) 0≤n≤M

0  otherwise
(7)

As a result the Hamming window is not zero at its edges, but rather has the value 

w (0)=w(M )= 4
46

> 0 (8)

Although this does null the first sidelobe, subsequent sidelobes do not fall off as fast as they do
in the Hann window frequency response. This is generally considered an advantageous trade off.
Using the approximations 25/ 46≈0.54  and 21/ 46≈0.46
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Fig. 3: (Left) Hann window for M =40 . (Right) Magnitude frequency response (normalized).
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Fig. 4: (Left) Hamming window for M =40 . (Right) Magnitude frequency response (normalized).
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w (n)={0.54−0.46cos(2 πn
M ) 0≤n≤M

0  otherwise

(9)

Actually brings the second sidelobe down about 1 dB more to about −43dB  (Fig. 5). Form (9),
that  we  might  call  a  “modified  Hamming  window”  is  what  is  usually  implemented  as  a
“Hamming window” as opposed to Hamming’s original version (7). In this course our “go-to
window” will be the Hamming window (form (9)) as it provides a good compromise between
main-lobe width and side-lobe amplitudes.

Blackman-Nuttall Window

A window  that  trades  off  even  more  main  lobe  width  for  smaller  sidelobe  ripples  is  the
Blackman-Nuttall window. Its definition is

w (n)={a0−a1 cos(2πn
M )+a2 cos(4 πn

M )−a3 cos(6 πn
M ) 0≤n≤M

0 otherwise

(10)

with

a0=0.3635819 , a1=0.4891775 , a2=0.1365995 , a3=0.0106411

The window and its frequency response are shown in Fig. 6. The mainlobe is considerably wider
than those of the windows we have previously considered, but the sidelobes are also considerably
lower,  a  bit  below  −90dB .  This  window goes  even further  in  the  the  mainlobe-width  vs.
sidelobe-amplitude trade off. 

Scilab code to apply Hann, Hamming and Blackman-Nuttall windows to an impulse response is
given in the Appendix.
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Fig. 5: Response of M =40  Hann (blue dot-dash), Hamming (green dashed), and modified Hamming (solid red).
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Other window types

All the windows we have considered so far have a mainlobe-plus-sidelobe structure. Although
very common, this  is not a necessary property of a window. For example, the Hann-Poisson
window (Fig. 7) adds an extra exponential taper to the Hann window with the result that there are
no sidelobes. Instead there is a single mainlobe that decreases monotonically and never reaches
zero. This makes it useful in algorithms where it is critical that the frequency response have no
ripples due to sidelobes. For example, where maxima in the frequency response need to be found
using  numerical  optimization  methods.  There  is  no  “best”  window.  There  are  only  “best”
windows for given applications. 
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Fig. 6: (Left) Blackman-Nuttall Window for M =40 . (Right) Magnitude frequency response (normalized).
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Fig.  7:  (Left)  Hann-Poisson  Window  for  M =40 .  (Right)  Magnitude  frequency  response  (normalized).  This
window has the property that its frequency response decreases monotonically, so there are “no sidelobes.”
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Frequency response of windowed FIR filters
Now we let the rubber hit the proverbial road and see what effects these various windows have
on filter responses. In Fig. 8, Fig. 9 and Fig. 10 we show the impulse and frequency response of a
lowpass  filter  with  f c=0.1 ,  M =50  and  rectangular,  Hamming  and  Blackmann-Nuttall
windows, respectively. 

The progressively larger mainlobe widths of the window’s frequency responses translate into less
rapid transition from passband to stopband. Smaller sidelobes translate into smaller ripples in the
passband and stopband. 

What  is  the  practical  implication  of  a  frequency response having ripples?  In  sounds.zip
there  are  four  files  named  chirp.mp3,  chirpLPrectangle.mp3,
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Fig. 8: Lowpass filter with rectangular window. (Normalized to 0 dB peak frequency response.)
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Fig. 9: Lowpass filter with Hamming window.
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chirpLPhamming.mp3, and chirpLPnuttall.mp3. The first is a “chirp” signal (linearly
increasing frequency) covering frequencies  0≤ f ≤0.2  with  F s=8 kHz . The other three are
lowpass  filtered  versions  with  cutoff  frequency  f c=0.1  and  M =100  using  rectangular,
Hamming, and Blackman-Nuttall windows. You can clearly hear the sidelobes of the rectangular
window as a series of pulsations in the stopband. These are barely audible with the Hamming
window and not audible with the Blackman-Nuttall window.

The filtered audio waveforms are shown in  Fig. 11. The transition from passband to stopband
(amplitude reduction in filtered signal) is most rapid for the rectangular window, less rapid for
the  Hamming  window  and  least  rapid  for  the  the  Blackman-Nuttall  window.  This  is  the
transition-band vs. side-lobe trade off. 
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Fig. 11: Lowpass-filtered chirp signal using (top) rectangular, (middle)
Hamming, and (bottom) Blackman-Nuttall windows. Amplitudes are in
dB ranging from 0 to -84 dB. (Audacity screenshot.)
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Fig. 10: Lowpass filter with Blackmann-Nuttall window.



Lecture 11 Windowing 9/11

Effect of windowing on transfer function zeros

In the previous lecture we pointed out that any FIR filter transfer function can be written in
factored form as

H (z )=b0(1−ζ1 z−1)(1−ζ2 z−1)(1−ζ3 z−1)⋯(1−ζM z−1) (11)

where the ζk  are the zeros of H (z ) . To within the multiplicative constant b0 , H (z )  is fully
specified by the locations of these zeros in the z plane. The effect of a particular window can be
thought of as simply moving the transfer function zeroes. For example, Fig. 12 shows the zeros
of a lowpass filter with rectangular and Hamming windows.

Perfect Reconstruction
The desired (ideal) impulse response of a lowpass filter is

hd
LP (n)=

sin (ωc n)
π n

 , hd
LP (0)=

ωc

π
(12)

As we have noted previously, the corresponding highpass filter impulse response is δ(n)  minus
the lowpass filter impulse response. Therefore

hd
LP (n)+ hd

HP (n)=δ(n) (13)

and the sum of lowpass- and highpass-filtered signals is the original signal. This is the perfect
reconstruction property of FIR filters. Let’s see if this still applies when we apply an arbitrary
window function? 

For the lowpass and highpass filters with impulse response of length M +1  let’s write

hw
LP , HP(n)=hd

LP , HP(n−M /2)w (n) (14)
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Here  hd
LP , HP(n−M / 2)  is  the  ideal  impulse  response  shifted  to  produce  a  causal  impulse

response and w (n)  is the windowing function. Summing the windowed lowpass and highpass
impulse responses we find

hw
LP(n)+ hw

HP(n)=[hd
LP (n−M /2)+ hd

HP (n−M /2)]w (n)

=δ (n−M /2)w (n)

={w(M /2) n=M /2
0 n≠M / 2

(15)

The only condition for a windowed FIR filter to provide perfect reconstruction is w (M /2)=1 .
All of the windows we have considered have this property. So, provided they have the same
length, same cutoff frequency, and use the same window, the two-band equalizer shown in Fig.
13 will achieve y (n)= x (n)  when g bass=g treble=1=0dB  regardless of the window used.

Likewise for the N-band equalizer shown in Fig. 14. Provided the filters have the same length,
matching  band  edges,  and  use  the  same  window, we  obtain  y (n)= x (n)  when
g1=g2=⋯=g N=1=0dB .

References
1. https://en.wikipedia.org/wiki/Window_function  
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Fig. 13: Two-band equalizer.
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Appendix 
//applies a Hann window to signal h(n)
function hw = winHann(h)
  N = length(h);
  hw = h.*(1-cos(2*%pi*[0:N-1]/(N-1)))/2;
endfunction

//applies a Hamming window to signal h(n)
function hw = winHamming(h)
  M = length(h)-1;
  hw = h.*(0.54-0.46*cos(2*%pi*[0:M]/M));
endfunction

//applies a Blackman-Nuttall Window to signal h(n)
function hw = winBlackmanNuttall(h)
  N = length(h);
  p = 2*%pi*[0:N-1]/(N-1);
  hw = h.*(0.3635819-0.4891775*cos(p)..
    +0.1365995*cos(2*p)-0.0106411*cos(3*p));
endfunction
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