
Lecture 10
FIR filters 2

Introduction
In the previous lecture we developed a design procedure for FIR lowpass and highpass filters. In
this lecture we consider bandpass and bandstop filters.

Bandpass filter
The desired frequency response of a bandpass filter (Fig. 1) is

H d (ω )={1 ω l≤|ω |≤ωh

0 otherwise
(1)

where ω l ,ωh  are the low- and high-frequency limits of the pass band. In the previous lecture
we showed that

hd (n)= 1
π ∫

0

π

H d (ω)cos (ω n)dω (2)

and

1
π ∫

ω1

ω2

cos(ω n)dω=
sin(ω2 n)−sin(ω1 n)

πn
(3)

For the special case n=0  the value is simply (ω2−ω1)/π . Therefore, the impulse response of
an ideal bandpass filter is

hd (n)=
sin(ωh n)−sin(ωl n)

πn
 , hd (0)=

ωh−ωl

π
(4)

As we did with lowpass and highpass filters, we convert this to a causal FIR filter by setting
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Fig. 1: Four ideal filter frequency responses.

−π πωc−ωc −π πωc−ω c

H d (ω )

−π πω l−ωh ωh−ω l −π πω l−ωh ωh−ω l

H d (ω )

H d (ω) H d (ω )

lowpass highpass

bandpass bandstop



Lecture 10 FIR filters 2 2/6

h (n)={hd (n−M /2) 0≤n≤M
0 otherwise

(5)

Example impulse and frequency responses are shown in Fig. 2.

We’ve seen that a highpass filter can be considered as the difference of an allpass filter and a
lowpass filter with the same cutoff frequency

hd
HP (n)=δ (n)−hd

LP (n) (6)

A bandpass filter can be thought of as the difference of a lowpass filter with cutoff  ωh  and a
lowpass filter with cutoff ωl

hd
BP(n)=hd

LP ,ωh(n)−hd
LP , ωl(n) (7)

Bandstop filter
The desired frequency response of a bandstop filter is

H d (ω )={0 ω l≤|ω |≤ωh

1 otherwise
(8)

We can also write this as

H d (ω)={1 0≤|ω |≤ω l

1 ωh≤|ω|≤π
0 otherwise

(9)

This represents the filter as the sum of a lowpass filter with cutoff frequency ωl  

hd (n)=
sin(ωl n)

πn
 , hd (0)=

ωl

π
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Fig.  2:  Bandpass  filter  with  f l=0.1 , f h=0.2  and  M=60 .  (Left)  impulse  response;  (right)  frequency
magnitude response.
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and a highpass filter with cutoff frequency ωh

hd (n)=
−sin(ωh n)

πn
 , hd (0)=1−

ωh

π

Therefore

hd (n)=
sin(ω l n)−sin(ωh n)

π n
 , hd (0)=1−

ω h−ω l

π
(10)

Comparing this to (4) we see that

hd
BS (n)=δ(n)−hd

BP(n) (11)

A bandstop filter is equivalent to the difference of an allpass filter and a bandpass filter. 

Transfer function zeros
The transfer function of an FIR filter is

H (z )=b0+ b1 z−1+ b2 z−2+ ⋯+ bM z−M (12)

We can write this as

H (z )= z−M b0[ z M+
b1

b0

zM −1+
b2

b0

zM −2+⋯+
bM

b0 ] (13)

The Mth order polynomial in brackets can be written in factored form

z M+
b1

b0

z M −1+
b2

b0

zM −2+⋯+
bM

b0

=(z−ζ1)(z−ζ2)⋯( z−ζM ) (14)

Therefore

H (z )=b0 z−M (z−ζ1)(z−ζ2)⋯( z−ζM ) (15)

where ζk  is the kth root of the polynomial – the  kth zero of H (z ) .  To within a multiplicative
constant |b0| , the frequency response magnitude is simply the product of distances from a point

e jω  on the unit circle to each of the zeros of H (z )

|H (e j ω)
b0

|=|e j ω−ζ1||e j ω−ζ2||e jω−ζ3 z−1|⋯|e j ω−ζM| (16)

This  gives  us  a  graphical  way to  think  about  FIR filter  design  (Fig.  3,  Fig.  4)  in  terms  of
positioning the zeros of  H (z )  in the  z plane. Our task is simply to choose  M points in the  z
plane corresponding to the zeros of  H (z ) .  If  any of these points has a non-zero imaginary
component, then the complex conjugate point must also be present. Other than that, we are free
to choose the points in any manner we wish. 

One approach to filter design is to choose some criterion for the “quality” of the filter response,
and then  find  the  zeros  that  maximize  this,  using  either  analytic  or  numerical  methods.  An
example is the Parks–McClellan algorithm [1].
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Representing a filter as quadratic factors
Note that we can express (15) in the alternate form 

H (z )=b0(1−ζ1 z−1)(1−ζ2 z−1)(1−ζ3 z−1)⋯(1−ζM z−1) (17)

The ζk  values are either real or complex. If two of them, say ζ1 ,ζ2 , are real then

(1−ζ1 z−1)(1−ζ2 z−1)=1−(ζ1+ζ2) z−1+ζ1 ζ2 z−2 (18)
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Fig. 3: Lowpass filter frequency response magnitude |H (ω)|  is |b0|  times the product of distances from zeros

to e j ω .

Fig. 4: Bandpass filter frequency response magnitude |H (ω)|  is |b0|  times the product of distances from zeros to

e j ω .
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is a quadratic with real coefficients. If ζ1 ,ζ2  are complex conjugates, ζ2=ζ1
∗ , then

(1−ζ1 z−1)(1−ζ2 z−1)=1−(ζ1+ζ2)z−1+ζ1 ζ2 z−2

=1−2 Re [ζ1] z−1+|ζ1|
2 z−2

(19)

and again we have  a  quadratic  with  real  coefficients.  It  follows that  any FIR filter  transfer
function can be expressed as factors of quadratics with real coefficients

H (z )=b0(b0
(1 )+b1

(1) z−1+b2
(1) z−2)(b0

(2)+b1
(2) z−1+b2

(2) z−2)⋯(b0
(K )+b1

(K ) z−1+b2
( K) z−2)

where M =2 K  or M =2 K−1 . In the second case (M is odd) one of the quadratics will be a
linear term, say, b0

(K )+b1
(K ) z−1 . 

References
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Scilab code
//FIR lowpass impulse response with 2*K+1 samples
//and cutoff frequency fc. (K=M/2)
function h = hLP(fc,K)
  wc = 2*%pi*fc;
  h = zeros(1,2*K+1);
  h(K+1) = wc/%pi;
  for n=1:K
    h(K+1+n) = sin(wc*n)/(%pi*n);
    h(K+1-n) = h(K+1+n);
  end
endfunction

//FIR highpass impulse response with 2*K+1 samples
//and cutoff frequency fc. (K=M/2)
function h = hHP(fc,K)
  h = -hLP(fc,K);
  h(K+1) = h(K+1)+1;
endfunction

//FIR bandpass impulse response with 2*K+1 samples
//and passband frequencies fl, fh. (K=M/2)
function h = hBP(fl,fh,K)
  wl = 2*%pi*fl;
  wh = 2*%pi*fh;
  h = zeros(1,2*K+1);
  h(K+1) = (wh-wl)/%pi;
  for n=1:K
    h(K+1+n) = (sin(wh*n)-sin(wl*n))/(%pi*n);
    h(K+1-n) = h(K+1+n);
  end
endfunction

//FIR bandstop impulse response with 2*K+1 samples
//and stopband frequencies fl, fh. (K=M/2)
function h = hBS(fl,fh,M)
  h = -hBP(fl,fh,M);
  h(M+1) = h(M+1)+1;
endfunction
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