
Lecture 9
FIR filters 1

Introduction
In our study of the z-transform we saw that a rational transfer function

H (z )=
b0+ b1 z−1+ b2 z−2+ ⋯+ bM z−M

1+ a1 z−1+ a2 z−2+ ⋯+ a N z−N
(1)

can be realized in the time-domain by the difference equation

y (n)=∑
k=0

M

bk x (n−k )−∑
k =1

N

ak y(n−k ) (2)

For N=0 , the H (z )  denominator is simply 1, and

H (z )=b0+ b1 z−1+ b2 z−2+⋯+ bM z−M (3)

It follows that

y (n)=∑
k= 0

M

bk x (n−k ) (4)

This has the form of a convolution with impulse response h (k )−bk , 0≤k≤M . 

Definition
A (causal) finite impulse response (FIR) filter is described by

y (n)=∑
k= 0

M

bk x (n−k ) (5)

This has M + 1  coefficients. The transfer function

H (z )=∑
k =0

M

bk z−k (6)

is a polynomial of order M in z−1 . It has zeros but no poles. For this reason it is also called an
all-zero filter.

Determining the coefficients
In this lecture we limit consideration to filters with a desired frequency response of the form

H d (ω )={1 passband
0 stopband

(7)

This includes ideal lowpass, highpass, bandpass and bandstop filters (Fig. 1). The corresponding
impulse response is the inverse Fourier transform

EE 464 Scott Hudson 2018-05-15



Lecture 9 FIR filters 1 2/9

hd (n)=
1

2π ∫
−π

π

H d (ω)e jω n dω (8)

We also limit consideration to filters with real impulse response. 

H d (−ω)=H d (ω ) (9)

The frequency response is an even function. Another way to express this is H d (ω )=H d (|ω |) .

With this condition we have

H d (−ω)e− jω n+ H d (ω )e jωn=H d (ω)(e jω n+ e− jωn)=2 H d (ω)cos(ω n) (10)

so we can write

hd (n)=
1
π ∫

0

π

H d (ω)cos (ω n)dω (11)

In this form hd (n)  is manifestly real if H d (ω )  is. Also, note that the impulse response is even
in n, hd (−n)=hd (n) , because cos (ω n)  is. 

A useful integral

If H d (ω )  is 1 in the interval ω1≤ω≤ω2  then (11) will include the integral

I = 1
π ∫

ω1

ω2

cos (ω n)dω

=
1
πn

sin(ω n)|
ω1

ω 2

=
sin(ω2 n)−sin(ω1 n)

π n

(12)

where we have assumed n≠0 . For the special case n=0  we have
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Fig. 1: Four ideal filter frequency responses.
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I = 1
π ∫

ω1

ω2

dω=
ω2−ω1

π
(13)

Lowpass filter
The frequency response of an ideal lowpass filter is

H d (ω)={1 0≤|ω|≤ωc

0 otherwise
(14)

where ωc=2π f c  is the cutoff frequency. To make use of (12) and (13) we set

ω1=0 ,ω2=ωc (15)

with the result

hd (n)=
sin(ωc n)

πn
 , hd (0)=

ωc

π
(16)

As expected, this impulse response is even, hd (−n)=hd (n) . Note that

sin (ωc n)
πn

=2 f c

sin(2π f c n)
2 π f c n

=2 f c sinc(2 f c n) (17)

and ωc /π=2 f c . Therefore, we can write

hd (n)=2 f c sinc(2 f c n) (18)

Highpass filter
The frequency response of an ideal highpass filter is

H d (ω)={1 ωc≤|ω |≤π
0 otherwise

(19)

where, again, ωc=2π f c  is the cutoff frequency. In  (12) and (13) we set

ω1=ωc ,ω2=π (20)

with result

hd (n)=
−sin(ω c n)

πn
 , hd (0)=

π−ωc

π
=1−

ωc

π
(21)

This impulse response is also even, hd (−n)= hd (n) .

For  a  given  ωc  call  the  lowpass  and highpass  impulse  responses  respectively  hd
LP (n)  and

hd
HP (n) . From (16) and (21) we see that

hd
LP (n)+ hd

HP (n)=δ(n) (22)

This perfect reconstruction property of FIR filters can be very useful. We will come back to this
in a future lecture. 
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Causal FIR filters
The ideal lowpass and highpass filter impulse responses we have derived are both infinite and
non-causal.  Therefore they  cannot  be  realized  in  practice.  We will  convert  an  ideal  impulse
response into a practical one by a two-step process (Fig. 2).

We first make the impulse response finite by truncating the desired impulse response as follows

h trunc(n)={hd (n) |n|≤M /2
0 |n|> M /2

(23)

where  M is  a  positive  even  integer.  We now have  an  FIR filter,  but  it  is  still  non-causal.
Truncating the impulse response obviously changes the impulse response which in turn changes
the frequency response. So, the price we pay for truncation is that the actual frequency response
H (ω )  will differ from the desired response H d (ω ) . 

Next we make the filter causal by shifting the impulse response so that the first non-zero sample
occurs at n=0  instead of at n=−M /2

h (n)=htrunc (n−M /2) (24)

The final result is

h (n)={hd (n−M /2) 0≤n≤M
0 otherwise

(25)

Shifting the impulse response simply causes a corresponding shift in the output of the filter

h(n)∗x (n)= y (n)→ h(n−n0)∗x (n)= y (n−n0) (26)

The output is delayed relative to the non-causal filter.

Scilab code to generate lowpass and highpass FIR impulse responses and calculate the frequency
response is given in the Appendix.

As we noted above, truncation of the impulse response means the frequency response will differ
from the desired  H d (ω ) . Let’s look at some examples of this effect.

Example 1:   Determine  the  coefficients  of  a  lowpass  FIR  filter  with  cutoff
frequency f c=0.1  and M =30 .

We have ωc=2π (0.1) . The n=0  desired impulse response value is
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Fig.  2:  (Left)  the  desired  impulse  response  is  generally  infinite  and  non-causal.
(Center) truncating makes it finite. (Right) shifting makes it causal.
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hd (0)=
2π (0.1)

π
=0.2

The n≠0  values are

hd (n)= sin(0.2π n)
π n

The finite, causal approximation is

h (n)={hd (n−20) 0≤n≤40
0 otherwise

This, and the corresponding frequency response magnitude

|H (ω)|=|∑
k =0

40

h(n)e− jωn|
with ω=2π f , are shown in Fig. 3.

Let’s try a highpass filter. 

Example 2:  Determine  the  coefficients  of  a  highpass  FIR  filter  with  cutoff
frequency f c=0.1  and M =30 .

As in the previous example  ωc=2π (0.1) . We have

hd (0)=1−
2π(0.1)

π
=0.8

hd (n)=− sin(0.2 n)
π n
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Fig. 3: Lowpass filter with f c=0.1  and M =30 .
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h (n)={hd (n−20) 0≤n≤40
0 otherwise

This, and the corresponding frequency response magnitude are shown in Fig. 4.

The frequency responses shown in Fig. 3 and Fig. 4 are clearly not ideal. Two things stand out.
First, the response has ripples in both the passband and stopband. Second, the transition between
passband and stopband is not instantaneous. Instead the response magnitude is 0.5 at the cutoff
frequency and has a finite slope. 

These two effects arise from truncating the ideal impulse response. Let’s see what happens if we
keep more impulse response values. Fig. 5 shows the lowpass filter response with M increased to
60. The transition between passband and stopband is more steeply sloped. Apparently we can
make the transition between passband and stopband arbitrarily rapid by proper selection of the
FIR filter length. However, the ripples have not decreased in amplitude. Instead, there are more
of them and they are more closely spaced. This is the so-called Gibbs phenomenon [1]. We will
look at a solution of this problem in our lecture on windowing. 
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Fig. 4: Highpass filter with f c=0.1  and M =30 .
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Choosing the filter length
If we truncate the impulse response of a lowpass filter as in (23) the frequency response is

H (ω )= ∑
n=−M /2

M /2

hd (n)e− jωn=hd (0)+ 2∑
n=1

M /2

hd (n)cos (ω n) (27)

The slope of this at the cutoff frequency, ω=ωc , is

d
dω

H (ω )|
ω=ωc

=−2∑
n=1

M /2

hd (n)n sin (ωc n) (28)

Since

hd (n)n sin (ωc n)=
sin2(ωc n)

π
(29)

we have

d
dω

H (ω)|
ω=ωc

=− 2
π ∑

n=1

M /2

sin2(ωc n) (30)

If we replace sin2(ωc n)  with its average value

⟨ sin2(ωc n)⟩ = 1
2

(31)

then

d
dω

H (ω )|
ω=ω c

≈− 2
π

M
2

1
2
=− M

2π
(32)

For H (ω )  to change by −1  (from 1 to 0) we require a frequency interval of about
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Fig. 5: Lowpass filter with f c=0.1  and M =60 .
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Δ ω≈
2π
M

(33)

Therefore

M ≈
1

Δ f
(34)

where Δ f  is (roughly) the width of the transition band between the passband and stopband. We
can use this value of M to come up with an initial design and then “tweak” it by trial and error to
meet our design specifications (keeping in mind that M needs to be an even integer).

Example 3:  Design  a  lowpass  FIR filter  with  cutoff  frequency  f c=0.2  and
Δ f =0.02 .

We  need  M ≈
1

0.02
=50 .  The  frequency  response  magnitude  of  the  filter

generated using

h = hLP(0.2,25);

is shown in Fig. 6.

References
1. https://en.wikipedia.org/wiki/Gibbs_phenomenon  
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Fig.  6: Frequency response magnitude for Example 3.  |H|  drops from a bit more than 0.9 to a bit less than 0.1
over the interval 0.19≤ f ≤0.21 .
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Appendix – Scilab code
//FIR lowpass impulse response with 2*K+1 samples
//and cutoff frequency fc. (K=M/2)
function h = hLP(fc,K)
  wc = 2*%pi*fc;
  h = zeros(1,2*K+1);
  h(K+1) = wc/%pi;
  for n=1:K
    h(K+1+n) = sin(wc*n)/(%pi*n);
    h(K+1-n) = h(K+1+n);
  end
endfunction

//FIR highpass impulse response with 2*K+1 samples
//and cutoff frequency fc. (K=M/2)
function h = hHP(fc,K)
  h = -hLP(fc,K);
  h(K+1) = h(K+1)+1;
endfunction

//calculate freq. resp. mag of transfer function H(z)
//H(z) = ( (b(1)+b(2)*z^(-1)+b(3)*z^(-2)+... )
// /(a(1)+a(2)*z^(-1)+a(3)*z^(-2)+... )
//at Np points over interval f1<=f<=f2
function [f,Hm] = freqRespMag(b,a,f1,f2,Np)
  M = length(b)-1;
  N = length(a)-1;
  f = linspace(f1,f2,Np);
  Hm = zeros(f);
  for k=1:Np
    zi = exp(-%i*2*%pi*f(k));
    num = b(1);
    for n=1:M
      num = num+b(n+1)*zi^n;
    end
    den = a(1);
    for n=1:N
      den = den+a(n+1)*zi^n;
    end
    H = num/den;
    Hm(k) = abs(H);
  end
endfunction
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