
Lecture 8
Fourier transform

Introduction
The Fourier transform is a special case of the z transform. The inverse Fourier transform allows
us to represent any signal as a superposition of sinusoids, or “pure tones.” Consequently it plays
a central role in audio analysis and is somewhat more intuitive than the z transform.

Definition
The z transform of signal x (n)  is

X ( z)= ∑
n=−∞

∞

x (n) z−n (1)

Evaluating this for z= e j ω  results in the Fourier transform

X (e jω)= ∑
n=−∞

∞

x (n)e− j ω n (2)

Although technically incorrect, for convenience we will often use the compact notation

X (ω)≝X (e j ω)  , X ( f )≝X (e j 2π f ) (3)

when there is no danger of misinterpretation.

Important properties

The Fourier transform is periodic with period 2π  because

e j (ω±2π)= e j ω → X (ω±2π)= X (ω) (4)

If x (n)  is real

X (−ω)= ∑
n=−∞

∞

x (n)e jωn=X ∗(ω) (5)

and  the  Fourier  transform  for  a  negative  frequency  is  just  the  conjugate  of  that  at  the
corresponding  positive  frequency.  Therefore  all  information  of  X ( f )  is  contained  in  the
frequency interval 0≤ f ≤1/2 . 

Inverse transform
Because the Fourier transform is simply a special case of the z transform, the standard partial-
fraction expansion method used for the inverse  z transform can also be used to evaluate the
inverse Fourier transform. In addition, the inverse Fourier transform can be expressed as the
integral

x (n)= 1
2 π∫−π

π

X (ω)e jω n dω (6)
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This  form  represents  the  signal  x (n)  as  a  superposition  of  complex  exponentials  (hence
sinusoids) with frequencies in the range −π≤ω≤π . We can verify (6) directly by substituting
(2) to find 

1
2π ∫

−π

π

X (ω)e jω n dω=
1

2π ∫
−π

π

∑
k=−∞

∞

x (k )e− j ω k e jω n dω

= 1
2π ∑

k =−∞

∞

x (k )∫
−π

π

e− j ω k e jω n dω
(7)

Since

∫
−π

π

e j ω(n−k ) dω=2πδ(n−k ) (8)

(7) reduces to

1
2π∫−π

π

X (ω)e jωn dω= ∑
k=−∞

∞

x (k )δ(n−k )= x (n) (9)

Exercise 1: Verify (8)

If x (n)  is real, setting

X (ω)= A(ω)e jθ(ω) (10)

and making use of (5) to write 

X (ω)e jω n+ X (−ω)e− jω n= X (ω)e jωn+ [ X (ω)e jωn ]*

=2 Re [ X (ω)e jω n ]
=2 A(ω)cos(ω n+ θ(ω))

(11)

we arrive at

x (n)= 1
π ∫

0

π

A(ω)cos (ω n+ϕ(ω))dω (12)

This represents any real signal  x (n)  as a superposition of (real) sinusoids with frequencies in
the range  0≤ω≤π , 0≤ f ≤1/2 .

Discrete-time and continuous-time Fourier transforms
If a discrete signal is a sampled version of a continuous signal

x (n)= xa(nT s) (13)

there is an important relationship between their Fourier transforms. The continuous-time Fourier
and inverse Fourier transforms are 

X a(Ω)=∫
−∞

∞

xa(t )e− jΩ t dt (14)

and 

xa( t)=
1

2π ∫
−∞

∞

X a(Ω )e jΩ t dΩ (15)

EE 464 Scott Hudson 2018-05-14



Lecture 8 Fourier transform 3/3

Substituting the latter into (13) and using T s=1/ F s  we obtain

x (n)= xa(n/ F s)=
1

2π ∫
−∞

∞

X a(Ω )e j (Ω/ F s)n
dΩ (16)

Since F=F s f  and Ω=F s ω  this becomes

x (n)=
F s

2π ∫
−∞

∞

X a(F s ω)e j ωn d ω (17)

Comparing this to (6) we see that if

X a(F s ω)=0  for |ω|>π (18)

then

X (ω)=F s X a( F sω) (19)

and the continuous- and discrete-time Fourier transforms are (essentially) identical. However, if
(18) is not true then we can write (17) as 

x (n)=
F s

2π ∑
k=−∞

∞

∫
−π

π

X a (F s ω+k 2π)e jω n dω (20)

Comparing this to (6) we have

X (ω)=F s ∑
k=−∞

∞

X a (F s[ω+k 2 π]) (21)

This is another way to express the sampling theorem. The k≠0  terms are frequency aliases. To
avoid these we need to have F s  large enough so that (18) is true. 
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