
Lecture 6
Stability

Introduction
Stability is an essential property of a practical digital system. An unstable system will (almost
always) “blow up” and become useless (or worse). We experimented with this is Project 1 when
we implemented an IIR notch  filter.  We saw that  small  changes  in  one parameter  caused it
change from a useful system to a noise source. Here we want to learn how we can ensure that any
filters we design are stable.

BIBO stability
A useful way to define stability for a discrete system is to require that a bounded input always
produces  a  bounded  output.  This  is  called  bounded-input,  bounded-output  (BIBO) stability.
Henceforth we will refer to this as simply “stability.” It follows that a system is unstable if there
exists a bounded input that produces an unbounded output, that is, the output “blows up” for
some bounded input. 

Formally, if a system is described by the transformation

y (n)=T {x (n)} (1)

then it is BIBO stable if and only if for any bounded input 

|x (n)|≤M x< ∞ (2)

the output is bounded 

|y (n)|< M y< ∞ (3)

where M x , M y  are finite positive numbers. 

LTI system stability
Any LTI system can be described by a convolution

y (n)= ∑
k=−∞

∞

h(k ) x (n−k ) (4)

If |x (n)|≤M x< ∞  then

|y (n)|≤ ∑
k=−∞

∞

|h(k )||x (n−k )|≤M x ∑
k=−∞

∞

|h (k )|

and |y (n)|< M y< ∞  if

∑
k =−∞

∞

|h(k )|<∞ (5)

This is a sufficient condition for stability. We also want to show that it is a necessary condition.
Suppose (5) is not true, so
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∑
k =−∞

∞

|h(k )|=∞ (6)

The signal defined as

x (−k )={ 1  , h(k )> 0
−1  , h(k )< 0

0  , h(k )=0

is bounded, |x (n)|≤1 , and

y (0)= ∑
k =−∞

∞

h(k ) x (−k )= ∑
k=−∞

∞

|h (k )|=∞ (7)

The output is not bounded and the system is unstable. So, we see that (5) is also a necessary
condition for stability. Therefore, a linear time-invariant system is stable (in the BIBO sense) if
and only if its impulse response is absolutely summable (condition (5)).

FIR filter stability
An FIR filter has the form

y (n)=∑
k=0

M

bk x(n−k ) (8)

with transfer function

H (z )=b0+ b1 z−1+ b2 z−2+⋯+ bM z−M (9)

The impulse response is

h(n)=bn (10)

and condition (5) is

∑
k =0

M

|bk|< ∞ (11)

FIR filters are  manifestly stable, except for the obvious, and uninteresting case where one or
more of the coefficients is infinite. Stability is not an issue for FIR filters.

IIR filter stability
An IIR filter has the form

y (n)=∑
k= 0

M

bk x (n−k )−∑
k =1

N

ak y(n−k ) (12)

with transfer function

H (z )=
b0+ b1 z−1+ b2 z−2+⋯+ bM z−M

1+ a1 z−1+ a2 z−2+ ⋯+ a N z−N
(13)

It’s easy to find an unstable IIR filter. For example
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y (n)= x(n)+ 2 y (n−1) (14)

The bounded input  x (n)=δ(n)  produces the unbounded output  y (n)=2n us(n) .  In contrast
with FIR filters, for IIR filters stability is an important issue to consider.

Exercise 1:  Show that  system (14)  with  input  x (n)=δ(n)  produces  output
y (n)=2n us(n)  (assume y (n)=0  for all n<0 ). 

If a causal system’s transfer function (13) has only simple poles,  p i , then we know that the
impulse response has the form

h(n)=∑
i

Ai pi
nus(n) (15)

If all poles satisfy |pi|<1  then h(n)  will exponentially decay as n→∞  and (5) will be satisfied.
If any pole has |pi|≥1  then (5) will not be satisfied, and the system will be unstable. 

For multiple poles the response will have terms of the form n pi
n , n2 pi

n  and so on. It is still true
that  if  |pi|<1  these  term will  decay  sufficient  fast  as  n→∞  so  that  (5)  will  be  satisfied.
Therefore:

A causal system with transfer function H (z )  is BIBO stable if and only if all poles of H (z )
fall inside the unit circle |z|=1 , that is, |pi|<1  for all poles. 

IIR notch filter

In Project 1 we observed that the notch filter 

H (e jω)=
1−2cos (ωb) z−1+ z−2

1−2r cos(ωb) z−1+ r 2 z−2 (16)

is unstable for  r≥1 . Let’s examine this in light of our BIBO stability condition. Multiplying
numerator and denominator by z2 , the poles of H are the solutions of the quadratic equation

z2−2 r cos (ωb) z+ r2=0 (17)

These solutions are

p=r cos(ωb)±√r 2 cos2(ωb)−r 2=r [cos(ωb)± j √1−cos2(ωb)] (18)

Since |p|=r  the stability condition reduces to r<1 .

Can “problem” poles be canceled?
Suppose  a  system with  transfer  function  H 1(z )  is  unstable  due to  a  simple  pole  p1  with
|p1|≥1 .  Let  a  second system have transfer  function  H 2(z )  with  a  zero at  z= p1 ,  that  is,
H 2( p1)=0 .  Suppose  we  cascade  these  systems  (Fig.  1)  to  obtain  a  transfer  function
H (z )=H 1(z )H 2(z ) . In principle the zero of H 2(z )  will cancel the problem pole of H 1(z )

and the cascaded system transfer  function  H (z )  will  be stable.  This  is  true in  theory,  but
problematic in practice.

First of all, even if the cancellation is ideal, the output of the first system, call it v (t ) , will still
“blow up” only to be reduced to a finite level by the second system. No real system, analog or
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digital,  can properly represent an arbitrarily large signal. Therefore, the cascaded system will
ultimately fail. 

Reversing the order of the filters would, in principle, solve this problem. Ideally, the components
in x (t)  that could excite the problem pole of H 1(z )  will be zeroed out by H 2(Z )  and not be
present in v (t ) . To actually achieve this in practice requires perfect cancellation. However, our
filters are implemented with finite precision, and perfect cancellation is generally not possible.

The following Scilab code applies input x (n)=δ(n)  to a filter with transfer function

1−(1.1−10−9) z−1

to produce output v (n) , and then applies that as input to a filter with transfer function

1

1−1.1 z−1

Ns = 220;
x = zeros(1,Ns);
x(1) = 1; //x is the delta function
b = [1,-1.1+1e-9];
a = [1];
v = filter(b,a,x);
b = [1];
a = [1,-1.1];
y = filter(b,a,v);
plot(y,'r.');

The total system transfer function is

H (z )=
1−(1.1−10−9) z−1

1−1.1 z−1

which is almost  1 for any value of z, but not exactly. The impulse response is shown in Fig. 3.
Ideally  this  would  be  y (n)=δ(n)  but  we  see  that  eventually  y (n)  starts  to  blow  up
exponentially.

This same effect can arise due to round-off error when filter coefficients are represented with
finite precision in a DSP processor. 
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Fig.  1: Cascading two filters in an attempt to cancel a problematic
pole in one of them.

x (t ) y (t )H 1(z ) H 2(z )
v (t )

Fig. 2: Cascade with order of filters reversed.

x (t ) y (t )H 2(z ) H 1(z )
v (t )
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Fig. 3: Impulse response of system described by above Scilab code.


	Introduction
	BIBO stability
	LTI system stability
	FIR filter stability
	IIR filter stability
	IIR notch filter

	Can “problem” poles be canceled?

