Lecture 5

The inverse z transform

Introduction

Given a signal $x(n)$ we can (in principle) calculate the z transform using the formula

$$
\begin{equation*}
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \tag{1}
\end{equation*}
$$

Let's consider the "inverse" problem where we start with $X(z)$ and want to calculate $x(n)$. There is a formal inverse z transform that can be used to do this. However, it requires the evaluation of a complex contour interval and is not of much practical use. (A similar statement applies to the inverse Laplace transform.) A practical method for calculating the inverse z transform is similar to the approach used to find the inverse Laplace transform; we use partial fractions to express $X(z)$ as a sum of simple terms, each of which can be inverse transformed by inspection.

Partial fraction expansion

Suppose we wish to calculate the inverse z transform of

$$
\begin{equation*}
X(z)=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \tag{2}
\end{equation*}
$$

If $X(z)$ has only simple poles (denominator has no repeated roots), a systematic way to do so is as follows.

1. Multiply by $\frac{z^{k}}{z^{k}}$ where z^{-k} is the most negative power of z in either the numerator or denominator. The resulting rational function will contain no negative powers of z.
2. If the result is not a proper rational function (it is usually the ratio of two $k^{\text {th }}$ order polynomials) divide it by z to get an expression for $\frac{X(z)}{z}$ that is proper.
3. Find all roots of the denominator. These are the poles p_{1}, p_{2}, \ldots which can be real or complex. If they are complex they come in conjugate pairs.
4. For each pole add a term $\frac{A_{i}}{z-p_{i}}$ to the partial fraction expansion. If the pole is complex there will also be a conjugate $\frac{A_{i}^{*}}{z-p_{i}^{*}}$ term.
5. Solve for the constants A_{i}.
6. Multiply both sides of the equation by z to get $X(z)$ equal to a sum of terms such as $A_{i} \frac{z}{z-p_{i}}$.
7. Write $A_{i} \frac{z}{z-p_{i}}=\frac{A_{i}}{1-p_{i} z^{-1}}$ for all values of i. Replace each such term with the inverse $z-$ transform $A_{i} p_{i}^{n} u_{s}(n)$.
Here's an algebraic example.
Example 1: If $X(z)=\frac{b_{0}+b_{1} z^{-1}}{1+a_{1} z^{-1}}$ what is $x(n)$?
Step 1. Multiply by $\frac{z}{z}$ to get $X(z)=\frac{b_{0} z+b_{1}}{z+a_{1}}$. This is a rational function of z, but it is not a proper rational function (the order of the numerator is not less than the order of the denominator).
Step 2. Form the proper rational function $\frac{X(z)}{z}=\frac{b_{0} z+b_{1}}{z\left(z+a_{1}\right)}$.
Step 3. The denominator has two roots: $0,-a_{1}$.
Step 4. Express $\frac{X(z)}{z}$ as partial fractions: $\frac{b_{0} z+b_{1}}{z\left(z+a_{1}\right)}=\frac{A_{1}}{z+a_{1}}+\frac{A_{2}}{z}$.
Step 5. Clear fractions, $b_{0} z+b_{1}=A_{1} z+A_{2}\left(z+a_{1}\right)=\left(A_{1}+A_{2}\right) z+a_{1} A_{2}$, and solve for the coefficients, $A_{2}=\frac{b_{1}}{a_{1}}, A_{1}+A_{2}=b_{0} \rightarrow A_{1}=b_{0}-\frac{b_{1}}{a_{1}}$.

Step 6. $X(z)=A_{1} \frac{z}{z+a_{1}}+A_{2}$
Step 7. $X(z)=A_{1} \frac{1}{1+a_{1} z^{-1}}+A_{2}$ so, by inspection,

$$
x(n)=A_{1}\left(-a_{1}\right)^{n} u_{s}(n)+A_{2} \delta(n)=\left(b_{0}-\frac{b_{1}}{a_{1}}\right)\left(-a_{1}\right)^{n} u_{s}(n)+\frac{b_{1}}{a_{1}} \delta(n)
$$

Now let's look at a numerical example.
Example 2: If $X(z)=\frac{1+\frac{1}{2} z^{-1}+z^{-2}}{1+\frac{3}{8} z^{-1}+\frac{9}{16} z^{-2}}$ what is $x(n)$?

Step 1. Multiply by $\frac{z^{2}}{z^{2}}$ to get $X(z)=\frac{z^{2}+\frac{1}{2} z+1}{z^{2}+\frac{3}{8} z+\frac{9}{16}}$.
Step 2. $\frac{X(z)}{z}=\frac{z^{2}+\frac{1}{2} z+1}{z\left(z^{2}+\frac{3}{8} z+\frac{9}{16}\right)}$ is a proper rational function.
Step 3. The denominator has three roots: 0 and $-\frac{3}{16} \pm j \frac{3}{16} \sqrt{15}$. Call these last two conjugate roots p and p^{*}.
Step 4. $\frac{z^{2}+\frac{1}{2} z+1}{z\left(z^{2}+\frac{3}{8} z+\frac{9}{16}\right)}=\frac{A_{1}}{z}+\frac{A_{2}}{z-p}+\frac{A_{2}^{*}}{z-p^{*}}$
Step 5. Multiply through by $z\left(z^{2}+\frac{3}{8} z+\frac{9}{16}\right)=z(z-p)\left(z-p^{*}\right)$ to get

$$
z^{2}+\frac{1}{2} z+1=A_{1}\left(z^{2}+\frac{3}{8} z+\frac{9}{16}\right)+A_{2} z\left(z-p^{*}\right)+A_{2}^{*} z(z-p)
$$

Setting $z=0$ we find $1=A_{1} \frac{9}{16} \rightarrow A_{1}=\frac{16}{9}=1.778$.
Setting $z=p$ we have $p^{2}+\frac{p}{2}+1=A_{2} p\left(p-p^{*}\right) \rightarrow A_{2}=\frac{p^{2}+\frac{1}{2} p+1}{p\left(p-p^{*}\right)}$. Plugging in the value of p we get $A_{2}=-\frac{7}{18}+j \frac{1}{18 \sqrt{15}}=-0.3889+j 0.01434$.

Step 6. $X(z)=A_{1}+A_{2} \frac{z}{z-p}+A_{2}^{*} \frac{z}{z-p^{*}}$
Step 7. $X(z)=A_{1}+A_{2} \frac{1}{1-p z^{-1}}+A_{2}^{*} \frac{1}{1-p^{*} z^{-1}}$ so

$$
\begin{aligned}
x(n) & =A_{1} \delta(n)+A_{2} p^{n} u_{s}(n)+A_{2}^{*}\left(p^{*}\right)^{n} u_{s}(n) \\
& =A_{1} \delta(n)+2 \operatorname{Re}\left\{A_{2} p^{n}\right\} u_{s}(n)
\end{aligned}
$$

(because the sum of a complex number and its conjugate is twice the real part of the number). This is most conveniently manipulated in polar format

$$
A_{2}=-\frac{7}{18}+j \frac{1}{18 \sqrt{15}}=-0.3889+j 0.01434=0.3892 e^{j 3.105}
$$

$$
\begin{gathered}
p=-\frac{3}{16}+j \frac{3}{16} \sqrt{15}=-0.1875+j 0.7262=0.75 e^{j 1.823} \\
\operatorname{Re}\left\{A_{2} p^{n}\right\}=\operatorname{Re}\left\{0.3892 e^{j 3.105} 0.75^{n} e^{j 1.823 n}\right\}=0.3892\left(0.75^{n}\right) \cos (1.823 n+3.105) \\
\text { so } \\
x(n)=1.78 \delta(n)+0.778\left(0.75^{n}\right) \cos (1.82 n+3.10)
\end{gathered}
$$

Try this for yourself
Exercise 1: If $X(z)=\frac{4-\frac{7}{4} z^{-1}}{1-\frac{3}{4} z^{-1}+\frac{1}{8} z^{-2}}$ what is $x(n)$?
Answer: $\left[3\left(\frac{1}{4}\right)^{n}+\left(\frac{1}{2}\right)^{n}\right] u_{s}(n)$

Repeated roots

As it is for the Laplace transform, it is possible to have repeated roots of the rational function denominator of the z transform. We will not make much use of this idea, but we cover it for completeness. Suppose we find

$$
\begin{equation*}
\frac{X(z)}{z}=\frac{a z+b}{(z-p)^{2}} \tag{3}
\end{equation*}
$$

which has a double root at $z=p$. The partial-fraction expansion is

$$
\begin{equation*}
\frac{a z+b}{(z-p)^{2}}=\frac{A}{z-p}+\frac{B}{(z-p)^{2}} \tag{4}
\end{equation*}
$$

Clearing fractions

$$
\begin{equation*}
a z+b=A(z-p)+B \tag{5}
\end{equation*}
$$

and equating the z coefficients and constant terms we solve for the coefficients

$$
\begin{equation*}
A=a, b=B-p A \rightarrow B=b+p a \tag{6}
\end{equation*}
$$

Multiplying through by z

$$
\begin{align*}
X(z) & =A \frac{z}{z-p}+B \frac{z}{(z-p)^{2}} \tag{7}\\
& =A \frac{1}{1-p z^{-1}}+B \frac{z^{-1}}{\left(1-p z^{-1}\right)^{2}}
\end{align*}
$$

Using our z-transform table we have

$$
\begin{equation*}
x(n)=\left[a p^{n}+(b+p a) n p^{n-1}\right] u_{s}(n) \tag{8}
\end{equation*}
$$

Another point of view is to treat the double root as two distinct roots at $p, p-\epsilon$ followed by letting $\epsilon \rightarrow 0$. We write

$$
\begin{equation*}
X(z)=\frac{a z+b}{(z-p)(z-p+\epsilon)}=\frac{A}{z-p}+\frac{B}{z-p+\epsilon} \tag{9}
\end{equation*}
$$

The inverse transform gives us

$$
\begin{equation*}
x(n)=\left[A p^{n}+B(p-\epsilon)^{n}\right] u_{s}(n) \tag{10}
\end{equation*}
$$

Clearing fractions in (9)

$$
\begin{equation*}
a z+b=A(z-p+\epsilon)+B(z-p) \tag{11}
\end{equation*}
$$

from which

$$
\begin{equation*}
a=A+B \text { and } b=-p(A+B)+\epsilon A \tag{12}
\end{equation*}
$$

The solution can be written

$$
\begin{equation*}
A=\frac{b+p a}{\epsilon}, B=a-A \tag{13}
\end{equation*}
$$

Now consider

$$
\begin{align*}
A p^{n}+B(p-\epsilon)^{n} & =A p^{n}+(a-A)(p-\epsilon)^{n} \\
& =A\left[p^{n}-(p-\epsilon)^{n}\right]+a(p-\epsilon)^{n} \tag{14}\\
& =\frac{b+p a}{\epsilon}\left[p^{n}-(p-\epsilon)^{n}\right]+a(p-\epsilon)^{n}
\end{align*}
$$

Since $(p-\epsilon)^{n}=p^{n}-n \epsilon p^{n-1}+\cdots$, in the $\epsilon \rightarrow 0$ limit this becomes

$$
\begin{equation*}
\frac{b+p a}{\epsilon}\left[n \in p^{n-1}\right]+a(p-\epsilon)^{n} \rightarrow(b+p a) n p^{n-1}+a p^{n} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
x(n)=\left[a p^{n}+(b+p a) n p^{n-1}\right] u_{s}(n) \tag{16}
\end{equation*}
$$

Analyzing LTI systems

The z and inverse-z transforms allow us to explicitly calculate the output of an LTI system. If the transfer function is $H(z)$ and the input is $x(n)$, we calculate $X(z)$ and then set

$$
\begin{equation*}
Y(z)=H(z) X(z) \tag{17}
\end{equation*}
$$

Finally we inverse transform $Y(z)$ to obtain $y(n)$. Let's illustrate with an example.
Example 3: A filter has transfer function $H(z)=\frac{1}{1-0.5 z^{-1}}$. The signal $x(n)=(-0.7)^{n} u_{s}(n)$ is input. What is the output $y(n)$?
The z transform of the input is $X(z)=\frac{1}{1+0.7 z^{-1}}$, so the z transform of the
output is

$$
\begin{aligned}
Y(z) & =\frac{1}{1-0.5 z^{-1}} \frac{1}{1+0.7 z^{-1}} \\
& =\frac{z}{z-0.5} \frac{z}{z+0.7}
\end{aligned}
$$

and $\quad \frac{Y(z)}{z}=\frac{z}{(z-0.5)(z+0.7)}=\frac{A}{z-0.5}+\frac{B}{z+0.7}$
Clearing fractions $z=A(z+0.7)+B(z-0.5)$ gives us the equations $1=A+B$, $0=0.7 A-0.5 B \rightarrow B=1.4 A$, so $1=2.4 A \rightarrow A=0.4167, B=0.5833$. Since

$$
Y(z)=A \frac{1}{1-0.5 z^{-1}}+B \frac{1}{1+0.7 z^{-1}}
$$

we have

$$
y(n)=\left[0.417 \cdot 0.5^{n}+0.583(-0.7)^{n}\right] u_{s}(n)
$$

Let's try with a different input.
Example 4: Repeat the previous example with $x(n)=\sin (0.1 \pi n) u_{s}(n)$ as input. The z transform of the input is

$$
X(z)=\frac{\sin (0.1 \pi) z^{-1}}{1-2 \cos (0.1 \pi) z^{-1}+z^{-2}}=\frac{0.3090 z^{-1}}{1-0.6180 z^{-1}+z^{-2}}
$$

Therefore, the z transform of the output is

$$
\begin{gathered}
Y(z)=\frac{1}{1-0.5 z^{-1}} \frac{0.3090 z^{-1}}{1-0.6180 z^{-1}+z^{-2}} \\
\frac{Y(z)}{z}=\frac{1}{z-0.5} \frac{0.309 z}{z^{2}-0.618 z+1}
\end{gathered}
$$

This has poles at $p_{1}=0.5, p_{2}=\left(0.618+\sqrt{0.618^{2}-4}\right) / 2=0.309+j 0.9511$, and p_{2}^{*}. The partial-fraction expansion is

$$
\frac{Y(z)}{z}=\frac{A}{z-p_{1}}+\frac{B}{z-p_{2}}+\frac{B^{*}}{z-p_{2}^{*}}
$$

Clearing fractions

$$
0.309 z=A\left(z-p_{2}\right)\left(z-p_{2}^{*}\right)+B\left(z-p_{1}\right)\left(z-p_{2}^{*}\right)+B^{*}\left(z-p_{1}\right)\left(z-p_{2}\right)
$$

Let $z=p_{1}$ to get $0.309 p_{1}=A\left(p_{1}-p_{2}\right)\left(p_{1}-p_{2}^{*}\right)$ from which

$$
A=\frac{0.309 p_{1}}{\left(p_{1}-p_{2}\right)\left(p_{1}-p_{2}^{*}\right)}=0.164
$$

Let $z=p_{2}$ to get $0.309 p_{2}=B\left(p_{2}-p_{1}\right)\left(p_{2}-p_{2}^{*}\right)$ from which

$$
B=\frac{0.309 p_{2}}{\left(p_{2}-p_{1}\right)\left(p_{2}-p_{2}^{*}\right)}=-0.08209-j 0.1460=0.167 \angle-2.083 \mathrm{rad}
$$

$$
Y(z)=A \frac{z}{z-p_{1}}+B \frac{z}{z-p_{2}}+B^{*} \frac{z}{z-p_{2}^{*}}
$$

$$
=A \frac{1}{1-p_{1} z^{-1}}+B \frac{1}{1-p_{2} z^{-1}}+B^{*} \frac{1}{1-p_{2}^{*} z^{-1}}
$$

$$
\text { we have } \quad \begin{aligned}
y(n) & =\left[A p_{1}^{n}+2 \operatorname{Re}\left\{B p_{2}^{n}\right\}\right] u_{s}(n) \\
& =\left[A p_{1}^{n}+2|B|\left|p_{2}\right|^{n} \cos (\omega n+\phi)\right] u_{s}(n)
\end{aligned}
$$

with $\omega=\angle p_{2}$ and $\phi=\angle B$. Since $p_{2}=1 \angle 1.256 \mathrm{rad}$

$$
y(n)=\left[0.164 \cdot 0.5^{n}+0.335 \cos (1.256 n-2.083)\right] u_{s}(n)
$$

Here is how some of these calculations can be done in Scilab.

```
deff('u=arg(v)','u=atan(imag(v),real(v))');
p1 = 0.5;
p2 = (0.618+sqrt(0.618^2-4))/2;
A = 0.309*p1/((p1-p2)*(p1-conj(p2)));
B = 0.309*p2/((p2-p1)*(p2-conj(p2)));
mprintf("A = %f\n", A);
mprintf("B = %f < %f\n", abs(B), arg(B));
mprintf("p2 = %f < %f\n", abs(p2), arg(p2));
```

The output is

```
A = 0.164187
B = 0.167465<-2.083129
p2 = 1.000000<1.256655
```

