
Lecture 3
Convolution

Introduction
For  a  continuous-time,  causal,  LTI  system  with  finite-duration  impulse  response  h (t) ,  the
output y (t)  is related to the input x (t)  by the convolution

y (t)=h(t )∗x (t )=∫
0

t M

h( τ) x (t−τ)d τ (1)

Although  this  accurately  describes  the  system,  it  does  not  provide  a  practical  method  for
implementing it. It may not even be possible to analytically calculate the convolution integral. 

In the discrete-time case the convolution is a finite sum

y (n)=h(n)∗x (n)=∑
k=0

M

h(k ) x (n−k ) (2)

which can actually be calculated on a computer (or DSP chip) and gives us a practical formula
for implementing the digital system. For discrete-time systems convolution is of both theoretical
and practical interest.  Therefore, it  is  worth our while to study discrete convolution in some
detail.

Interpretation
The convolution

y (n)=h(n)∗x (n) (3)

can be expressed in two ways,

y (n)= ∑
k=−∞

∞

h (k ) x (n−k ) (4)

and

y (n)= ∑
k=−∞

∞

x (k )h(n−k ) (5)

Consider the n=2  terms of (4)

y (2)=h(0)x (2)+h(1) x(1)+h (2) x (0)+⋯
                           +h(−1) x (3)+h(−2) x (4)+⋯

(6)

This shows how y (2)  is a linear combination of all input samples (some of the coefficients can,
of course, be zero) and is illustrated in Fig. 1 at left. 

Consider the k=2  term of (5). This tells us that for any value of n, x (2)  contributes the term

y (n)← x (2)h(n−2) (7)

to the corresponding output. Specifically

EE 464 Scott Hudson 2018-04-27



Lecture 3 Convolution 2/4

y (0)← x (2)h (−2)  ,  y (1)← x (2)h (−1)
y (2)← x (2)h (0)  ,  y (3)← x(2)h(1)  ,  y (4)← x (2)h(2)

(8)

This is illustrated in Fig. 1 at right. Each input sample contributes (in principle) to every output
sample (again, some of the coefficients can be zero).  The coefficients that “connect” the input
samples  to  the  output  samples  are  the  impulse  response   values.   We  can  think  of  the
representations in Fig. 1 as the “output point of view” and the “input point of view.” 

Calculation
The general forms (4) and (5) have infinitely many terms. In some cases the summations may be
performed analytically,  but  an infinite summation cannot  be performed numerically.  Suppose
both h (n)  and x (n)  are causal ( h (n)=x (n)=0  for all n<0 ). Then for n≥0

y (n)=∑
k=0

n

h(k ) x (n−k ) (9)

is a finite sum which we can easily code in Scilab as

for n=0:nMax
  y(n+1) = 0;
  for k=0:n
    y(n+1) = y(n+1)+h(k+1)*x(n-k+1);
  end
end

The  +1  terms in the indices compensate for Scilab indexing starting at  1 instead of 0. The
number of terms in the  k summation grow with  n. If the system has a  finite impulse response
(FIR) such that h(n)=0  for n<0 , n>M  then

y (n)=∑
k=0

M

h(k ) x(n−k ) (10)

and we only  have  M +1  terms to calculate  for  each value of  n.  “FIR filters” are  typically
implemented using this summation directly, either in software or DSP hardware. 

Substituting k=n−i  we have

y (n)= ∑
i=n−M

n

x (i)h(n−i) (11)
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Fig. 1: (Left) each output value is a linear combination of input values. The weight of the contribution
is hk where k is the number of time steps in the future of the output relative to the input. If k is negative
then  the  present  is  affected  by  the  future  (a  non-causal  system).   (Right)  each  input  value  can
contribute to every output value; xn  contributes to yn+ k  with weight hk .
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which we can interpret graphically as telling us to “flip and shift” the impulse response h(n)
along the input signal x (n) . This is illustrated in Fig. 2.

Example 1: What is the convolution of x=[ 0̊ , 1,3,2,1,0]  and h=[ 1̊ ,−1,1 ,−1] ?

Let’s list  x (k )  and  h(n−k )  for  n=0,1,2 ,… , multiply corresponding terms,
and sum (the “flip and shift” method). Here we underline the n=0  samples.

x(k)             0  1  3  2  1  0
h(0-k) -1  1 -1  1
                 0 sum 0

x(k)             0  1  3  2  1  0
h(1-k)    -1  1 -1  1
                 0  1 sum 1

x(k)             0  1  3  2  1  0
h(2-k)       -1  1 -1  1
                 0 -1  3 sum 2

x(k)             0  1  3  2  1  0
h(3-k)          -1  1 -1  1
                 0  1 -3  2 sum 0

Continuing the process we find x∗h=[0 ,1,2,0,1 ,−2 ,−1 ,−1,0] .

We can use Scilab’s conv function to do the calculation.

Example 2: Use Scilab to work the last example.

-->x = [0,1,3,2,1,0];
 
-->h = [1,-1,1,-1];
 
-->y = conv(h,x)
 y  =
 
    0.    1.    2.    0.    1.  - 2.  - 1.  - 1.    0.  
 
-->y = conv(x,h)
 y  =
 
    0.    1.    2.    0.    1.  - 2.  - 1.  - 1.    0.  
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Fig. 2: “Flip and shift” method of convolution.
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Exercise 1: Compute the convolution of 

x=[1̊ , 2,3,2,1]  and h=[ 1̊ , 0 ,−1]

by hand using the “flip and shift” method. Check your answer using Scilab’s
conv function.

Answer: [0,1,2,0,1 ,−2 ,−1 ,−1,0] . 

The “tabular” method is somewhat more compact. Draw a rectangular array of cells, one row for
each value hi  and one column for each value x j . Label columns at top with the hi  value and
label rows at right with h j  values (Fig. 3).

In each cell enter the product hi x j . Finally, sum along diagonal lines to obtain

y (0)=h(0) x (0)
y (1)=h (0) x(1)+h (1) x (0)
y (2)=h(0) x (2)+h(1)x (1)+h (2) x(0)

(12)

and so on.

Example 3:  Use  the  tabular  method  to  compute  the  convolution
y (n)=h(n)∗x (n)  for h(n)=[1̊ ,0.5,0 .25] , x (n)=[ 1̊ ,0 ,−1 ,−0.5,0 .5,0 .25]

We find y (n)=[1̊ ,0.5 ,−0.75 ,−1,0,0.375,0 .25,0.0625] .

Give this a try.

Exercise 2:  Use  the  tabular  method  to  compute  the  convolution
y (n)=h(n)∗x (n)  for h(n)=[1̊ ,−1] , x (n)=[ 1̊ , 0.5,0 .25] . Check your answer

using the Scilab conv command. 

Answer: y (n)=[1̊ ,−0.5 ,−0.25 ,−0.25] .
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Fig.  3: Tabular method for computing convolution.
Each  cell  contains  a  product  hi x j .  These  are
summed along diagonal lines to obtain y n . 

x0 x1 x 2 x3 x 4 x5

h0

h1

h2

y 0

y 1

y2 y3 y4 y 5 y 6 y7

1 0 -1 -0.5 0.5 0.25
1 1 0 -1 -0.5 0.5 0.25 1
0.5 0.5 0 -0.5 -0.25 0.25 0.125 0.5

0.25 0 -0.25 -0.125 0.125 0.0625 0.25
-0.75 -1 0 0.375 0.25 0.0625
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