
Lecture 2
Discrete systems

One-dimensional discrete signals
As opposed to an analog signal x (t) , a discrete signal (or discrete-time signal) xn  is a sequence
of  discrete  values.  Such signals  are  often  produced by sampling  a  continuous  signal  at  the
instants of time t n=nT s  where T s  is the sampling period in seconds. The resulting sequence is

xn= x (t n)= x (n T s)

The amplitude  x can be continuous or discrete. In applications the amplitude is almost always
discrete (quantized to a finite number of distinct values) since this is the only type of signal that
can be physically represented in a digital  system. We call  a discrete-time, discrete-amplitude
signal a  digital  signal  and reserve the term “discrete signal” for a discrete-time, continuous-
amplitude signal. By default  we will assume any signal  xn  is of this  type, unless otherwise
stated. If a signal is digital but has enough amplitude levels (bits of resolution), the effects of
discretization can be negligible, and we can safely treat it  as a continuous-amplitude discrete
signal which usually simplifies analysis.

Written representation

Formally,  a discrete  signal  is  a function that  associates a value  xn  with each integer  index
−∞< n< ∞ . We call n the time index, or simply the index. We could describe a signal using a
formula such as

xn={ 1

2n n≥0

0 n< 0
(1)

Or, we could list its values

xn=[… ,0 ,0 ,1̊ ,
1

21 ,
1

22,

1

23 ,…] (2)

where the ellipsis (…) indicates that the obvious pattern continues without end. Since the index
isn’t explicitly listed in this representation, we need a way to allow the reader to determine it.
Our convention is to put a small circle over the n=0  value so that the corresponding indices are
apparent. 

The listing-of-values approach is particularly practical when xn  has a finite number of non-zero
values. For example

xn=[1 , 3̊ ,−2,5,6,7,9]

tells us that

x−1=1 , x0=3 , x2=−2 , x3=5 , x4=6 , x5=7 , x6=9

EE 464 Scott Hudson 2018-04-26



Lecture 2 Discrete systems 2/8

For all other values of n we assume xn=0 . Alternately we could show the xn  values on a plot
(Fig. 1). 

We will often use the functional notation

x (n)≡xn

interchangeably with the array index notation. This is especially useful since this is how Scilab
represents  discrete  signals  (arrays).  Although we will  not,  some authors  use square brackets
instead of parenthesis,  x [n]  vs.  x (n) , to distinguish a discrete signal from an analog signal.
The notation x [n]  corresponds to how arrays are represented in languages such as C and Java.

However represented, keep in mind that n is a discrete variable that takes on only integer values.
It cannot be treated like a continuous variable. For a discrete signal x (1.37)  is meaningless, as

is an expression such as 
d
dn

x(n) . 

Computer representation

In Scilab a discrete signal might be an array we create, such as in the following example.

Example 1:  Generate  the  signal  x (n)=2cos (2π (0.05)n) ,  −2≤n≤2  using
Scilab.

--> n = -2:2
 n  = 
  -2.  -1.   0.   1.   2.

--> x = cos(2*%pi*0.05*n)
 x  = 
   0.809017   0.9510565   1.   0.9510565   0.809017

Try this for yourself. Note that we have created two arrays, one of the indices n and a second of
the values xn .
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Fig. 1: Representing a discrete signal with a graph.



Lecture 2 Discrete systems 3/8

Exercise 1:  Generate  the  signal  x (n)=2 sin(2π(0.125)n) ,  3≤n≤8  using
Scilab.

Very often in this class a discrete signal will be an array we read from a sound file. For example

--> [x,Fs,Nbits] = wavread('jfk.wav');

--> disp(length(x));

   62379.

reads the 62,379 sound samples in the file jfk.wav into the array x. A discrete signal can also
be defined using a function. For example

function v = x(n)
  if (n>=0)
    v = cos(2*%pi*0.1*n);
  else
    v = 0;
  end
endfunction

Two fundamental discrete signals
Here we introduce the discrete delta and step functions which are building blocks for many more
complicated signals.

Delta function

The delta function is shown in Fig. 2 and defined as

δ (n)={1 n=0
0 n≠0

(3)
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Fig. 2: Plot of delta function (impulse function).
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This function is zero everywhere except for a unit impulse at time n=0 . It is sometimes called
the impulse function. This will play a central role in our analysis of discrete systems. In particular
we will see that linear time-invariant discrete systems can be fully characterized by applying
δ (n)  as the input and observing the resulting impulse response h(n) .

Unit step

The unit step function can be thought of as representing a process “turning on” at discrete time
n=0  (Fig. 3).

us(n)={1 n≥0
0 n< 0

(4)

A difference of shifted unit step functions

p (n)=us(n−non)−us(n−noff ) (5)

can be used to represent a unit-amplitude pulse that turns on at n=non  and off at n=noff

Discrete frequencies and sinusoids
Analog sinusoids of the form

xa( t)= Acos (2π F t+ ϕ) (6)

play a central role in the analysis of continuous-time systems. Here F is the (analog) frequency in
Hz (cycles per second). Sampling this with sampling period T s  we obtain the discrete signal

x (n)= xa(nT s)= Acos (2π F T s n+ ϕ ) (7)

The sampling frequency is F s=1/T s . For example, if T s=0.01s  then the sampling frequency
is 100Hz , that is, we obtain 100 samples every second. Defining the discrete frequency f as
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Fig. 3 Plot of unit-step function.
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f =F T s=
F
F s

→ F= f F s (8)

we can express our discrete sinusoid as

x (n)=A cos (2π f n+ ϕ ) (9)

Note that f  is dimensionless. You can think of it as having “units” of “cycles per sample.” 

Aliasing

Unlike analog sinsusoids, discrete sinusoids are subject to  aliasing due to “under sampling.”
Consider that for any integer k we have

cos (2π [ f + k ]n+ ϕ)= cos(2π f n+ 2π k n+ ϕ)=cos (2π f n+ ϕ) (10)

since k n  is an integer and adding an integer multiple of 2π  to the argument of a sinusoid does
not change its value. This means that, for example,  cos(2π 0.1 n)  and  cos(2π1.1 n)  are the
same discrete signal. We say that the discrete frequency  f =1.1  is an  alias of the frequency
f =0.1 . This is illustrated in Fig. 4.

Suppose an analog audio signal contains a tone at  F=1,600 Hz  and a tone at  F=8,800Hz ,
and we sample it  with frequency  F s=8,000 Hz . The corresponding discrete  frequencies are
f =0.2  and  f =1.1 .  But  samples  with  f =1.1  are  indistinguishable  from  samples  with
f =0.1 . Since f =0.1  corresponds to F=800Hz  we will obtain the same discrete signal we

would have if the two analog tones were instead F=1,600Hz  and F=800Hz . 

We can avoid aliasing ambiguities by limiting ourselves to discrete frequencies in the range

−
1
2
≤ f ≤

1
2

(11)

The corresponding analog frequency range is

−
F s

2
≤F≤

F s

2
(12)
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Fig. 4: Sinusoids with discrete frequencies f =0.1 , f =1.1 . The dots show the discrete signal values. The curves
show corresponding continuous signals which the discrete values could be samples of. For f =1.1  the sampling
process suffers from aliasing.



Lecture 2 Discrete systems 6/8

Another way to express this is

F s≥2|F| (13)

for all frequencies  F present in the signal. In words:  the sampling frequency must be at least
twice  the  largest  frequency  magnitude  in  the  analog  signal. This  is  know as  the  Sampling
Theorem. As an example, humans can hear frequencies up to about 20 kHz. Unaliased sampling
of audible frequencies therefore requires a sampling frequency of at least 40 kHz. The sampling
rate for CD audio is 44.1 kHz≥2(20 kHz) . Therefore the discrete signal on a CD can represent
any frequency components a human can hear. 

Discrete systems
A discrete system transforms an input sequence xn  into an output sequence yn  as illustrated in
the following figure.

We write

y (n)=T {x (n)} (14)

where T {}  represents the transformation by which the system produces output y from input x.

There is very little we can say about a general system. It is only when we constrain the system’s
properties that it begins to have identifiable characteristics. A system may have one or more of
the following properties.

• Linear: It satisfies the principle of superposition.

• Non-linear: It does not satisfy the principle of superposition.

• Time-invariant:  If  a  given  input  produces  a  given  output,  shifting  the  input  in  time
produces the same output shifted in time.

• Time-variant:  Shifted versions of a given input can produce different  types of output
signals. 

• Causal: The present output depends only on the present and past inputs, not on future
inputs.

• Non-causal: The present output depends on future inputs.

• Stable: For any finite input the output remains finite.

• Unstable: The output can “blow up” (grow without bound) for a finite input.

• Deterministic:  The  relation  between  input  and  output  is  precisely  specified  by  a
mathematical description of the system.

• Stochastic: The behavior of the system is unpredictable (random) at some level.

We  will  consider  only  deterministic  systems  in  this  course.  For  the  most  part  we  will  be
concerned  with  causal,  linear,  time-invariant  systems,  but  not  exclusively.  Indeed,  we  will
analyze some useful nonlinear systems later in the course.
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Linear systems

A linear system satisfies the superposition principle. We state this as

if:     T {x1(n)}= y1(n)  and T {x2(n)}= y2(n)
then: T {a1 x1(n)+ a2 x2(n)}=a1 y1(n)+ a2 y 2(n)

(15)

for any constants a1 , a2 . The transformation produced by a linear system has the form of a linear
combination of the input values. This can be expressed in the form

y (n)= ∑
k=−∞

∞

h (n , k )x (k ) (16)

We call h (n , k )  the impulse response of the system. To see why, let the input be an impulse at,
say, time step 2: x (n)=δ(n−2) . Then

y (n)= ∑
k=−∞

∞

h (n , k )δ (k−2)=h (n , 2) (17)

The signal h (n , 2)  is the response of the system to an impulse input at time sample 2. Likewise
the signal h(n , k )  is the response of the system to an impulse input at time sample k (Fig. 6).
For a general linear system the impulse response is a two-dimensional function.

Linear time-invariant (LTI) systems

A system that has the property

if:     T {x (n)}= y (n)
then: T {x(n−k )}= y (n−k )

is said to be  time invariant. Suppose  x1(n)=δ (n) ; then  y1(n)=h(n ,0) .  If  x2(n)=δ(n−k )
then y2(n)=h(n , k ) . But x2(n)= x1(n−k )  so we must have y2(n)= y1(n−k ) . It follows that

h(n , k )=h(n−k ,0)≡h(n−k ) (18)

and the impulse response of a LTI system is a one-dimensional function. (16) becomes

y (n)= ∑
k=−∞

∞

h(n−k ) x (k ) (19)

We say y is the convolution of h and x, and we use ∗  to denote it

y (n)=h(n)∗x (n) (20)

In (19) let k=n−i . Then n−k=i  and 

y (n)= ∑
k=−∞

∞

h(n−k ) x (k )= ∑
i=−∞

∞

x (n−i)h(i) (21)

The convolution doesn’t change if we change the order of the functions, that is,

h(n)∗x(n)=x (n)∗h (n) (22)

Causal linear time-invariant systems

If the impulse response of an LTI system is

h (n)=T {δ(n)} (23)
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and if

h (n)=0  for all n<0 (24)

then the system is causal. This means that the present is not affected by the future, only by the
present and the past (Fig. 6).

The input-output relationship can be written

y (n)=∑
k=0

∞

h(k ) x (n−k ) (25)

If x (n)= y(n)=0  for n< 0  (x and y are also “causal”) then

y (n)=∑
k=0

n

h(k ) x (n−k ) (26)

This is a finite sum, so it can be calculated on a computer. We have

y (0)=h(0) x (0)
y (1)=h (0) x(1)+ h(1) x (0)
y (2)=h(0) x (2)+ h(1) x (1)+ h (2) x (0)

(27)

and so on.

All real-time systems must be causal because we live in a causal world (the laws of physics are
causal). But not all systems operate in real time. An important example is a filter applied to a
prerecorded audio signal. The entire audio signal has “already happened.” So, at any point in the
signal the future is known; it’s just the subsequent samples in the audio file. In this case a non-
causal filter is possible, and often desirable, to implement.
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Fig.  6: (LEFT) For a general linear system the impulse response depends on both the output and
input  indices.  (RIGHT)  For  a  time-invariant  system the  impulse  response  depends  only  on  the
difference of the output and input indices. Both systems are causal because the arrows never connect
a future input with a present output. 
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