
Lecture 1
Review of linear systems

Introduction
Most of the digital signal processing concepts we will study are discrete forms of the continuous
linear-systems concepts you studied in EE 261, 321, and 341. Accordingly we begin with a brief
review of those ideas.

One-dimensional continuous signals
A one-dimensional  (1D)  continuous  signal x (t)  is  a  function  that  assigns  a  value  of  the
dependent variable x to every value of the  independent variable t.  We will  also call  this  an
analog signal. In circuit analysis the independent variable t is time and the dependent variable x
is typically a voltage or current at some point of the circuit. In mechanics  x might be a linear
position or an angle. We will focus on audio signals and treat x as a dimensionless amplitude.

Unless otherwise stated we assume t varies over all possible values −∞< t< ∞ . For example,
the most general sinusoidal signal takes the form

x (t)= A cos(Ω t+ ϕ) (1)

where Ω=2π F  is the angular frequency (radians per second), F is the frequency (Hz or cycles
per second), A is the amplitude, and f is the phase (radians, or sometimes expressed in degrees).

The following are some important functions. We will use the discrete forms of these extensively.

Unit-step function

The unit-step function can be used to represent a signal that “turns on” at t=0 .

us(t )={1 t≥0
0 t< 0

(2)

Multiplying another signal by the unit-step function models that signal turning on at  t=0 . A
sinusoid turning on is

x (t)= A cos(Ω t+ ϕ)us(t) (3)

We can use a difference of unit-step functions to model a signal that turns on and then off. 

p (t)= us(t−t on)−us( t−toff ) (4)

is rectangular pulse that turns on, off at  t on , t off .  We can extend this idea to non-rectangular
pulses. For example, the function

x (t)= xon e−(t−t on)/ τ [us( t−t on)−us(t−t off )] (5)

describes an exponential that begins at t on , decays with time constant t, and ends at t off .
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Rectangle function

A more compact way to represent on/off behavior is the rect (“rectangle”) function

rect (t )=u s(t+1 /2)−u s(t−1 /2)={1 |t|≤1
2

0 |t|> 1
2

(6)

This is a pulse of width  Δ t=1  centered on  t=0 . The function  A rect ((t−t0)/T )  therefore
represents a rectangular pulse of amplitude A and width T centered at t=t 0 .

Delta function

The delta function is the limiting case of a rectangular pulse of zero width and infinite amplitude.

δ (t)= lim
w → 0

1
w

rect( t
w ) (7)

The delta function is  also called an  impulse.  An important application is its  use to represent
sampling

x (t)=∫
−∞

∞

δ (t−τ) x (τ )d τ=lim
w → 0

1
w

∫
t−w / 2

t+ w / 2

x (τ )d τ (8)

Sinc function

The sinc function (pronounced “sink”) is
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Fig. 1 The sinc function.
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sinc(t )≝sin (π t)
π t

(9)

and is plotted in Fig. 1. It is unity at t=0  and zero for non-zero integer values of t. The main-
lobe extends over  −1≤t≤1 . Smaller sidelobe ripples characterize |t|> 1 . As we will see, the
sinc function plays a central role in filter theory. 

Sinusoids

The  most  general  sinusoid  is  (1).  For  analytic  purposes  it  can  be  very  useful  to  represent
sinusoids in terms of complex exponentials. Euler’s formula 

e j θ=cosθ+ j sin θ (10)

allows us to write

cos θ=
1
2

(e j θ+e− jθ)

sin θ= 1
2 j

(e j θ−e− j θ)
(11)

We can use these to express a general sinusoid as

A cos(Ω t+ ϕ)= Re {A e j ϕ e j Ω t }= 1
2

( A e j ϕ e j Ω t+ Ae− j ϕ e− j Ω t ) (12)

SISO systems
A single-input, single-output (SISO) continuous system (Fig. 2) transforms an input signal x (t)
into an output signal y (t) .

Fig. 2: Continuous SISO system.

We write

T [ x (t)]= y (t) (13)

to represent the  transformation that produces  y from x. There is not much we can say about a
transformation unless we somehow constrain its properties.

Linear systems

A  linear system satisfies  the  principle  of  superposition.  If  T [ x1(t)]= y1(t )  and
T [ x2(t )]= y2(t )  then for any constants a1 , a2  we have

T [a1 x1(t )+ a2 x2( t )]= a1 y1(t)+ a2 y2(t) (14)

If a system is linear then each output value  y (t)  is a linear combination of the input values
x (t) , We can express this as

y (t)=∫
−∞

∞

h (t , τ )x (τ )d τ (15)

If our input is an impulse at time τ , the output is
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h (t , τ)=∫
−∞

∞

h (t , u)δ (u−τ)du (16)

We call  h (t , τ)  the  impulse  response of  the  system.  Note  that  for  a  general  linear  system
h (t , τ)  is a 2D function. This means that the time response (t) of the system to impulses at
different times (t) can be arbitrarily related. That is, the “behavior” of the system can change
through time. As an example, it might behave like a lowpass filter now and later behave like a
highpass filter in response to time-varying filter parameters, for example, someone turning knobs
on an audio equalizer. 

Linear time-invariant systems

A linear system is  time-invariant if it “behaves” the same at all times, and we call it a  Linear
Time-Invariant (LTI) system. Shifting an input in time gives the same output, merely with a
corresponding time shift. If T [ x (t)]= y (t)  then

T [ x (t−t 0)]= y (t−t 0) (17)

If we define the response to an impulse at time 0 as

h (t)≝h(t ,0) (18)

then the response to an impulse at time t is simply the shifted version

h (t−τ)≝h (t , τ ) (19)

The impulse response is now a 1D function. The input-output relation (15) reduces to

y (t)=∫
−∞

∞

h (t−τ) x( τ)d τ (20)

which is called the convolution of h (t)  and x (t) . A change of variable u=t−τ  allows us to
write

y (t)=∫
−∞

∞

h (u) x (t−u)du (21)

We use an asterisk operator 

y (t)=h(t )∗x( t)= x (t )∗h(t) (22)

to denote convolution.

Causal systems

A causal system is one in which the present does not depend on the future. All realtime systems
must be causal since we live in a causal universe. An LTI system is causal if and only if

h (t)=0 , t< 0 (23)

This says there can be no impulse response output before the impulse input occurs. 

Not all systems are causal. A non-causal system is possible if “the future has already occurred.”
As an example, a complete piece of music has been recorded and you wish to filter it. At any
place in the signal the future signal samples are already known so the current output can “depend
on the future.” In “near realtime” systems this can be implemented by introducing a time delay
between input and output. This idea is used extensively for DSP processing of voice signals in
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cell phone and internet applications. The delay is typically a few tens of milliseconds, which is
not enough to have a noticeable effect on a conversation. 

Fourier series
A periodic function x (t±T )= x( t)  can be represented by a Fourier series

x (t)=a0+ ∑
n=1

∞

[an cos (nω0 t)+ bn sin(nω0 t)] (24)

where ω0=(2π)/T . The coefficients are

a0=
1
T

∫
0

T

x (t )dt (25)

and

an=
2
T

∫
0

T

x (t)cos(nω0 t)dt

bn=
2
T

∫
0

T

x (t )sin (nω0 t)dt

(26)

If a function x (t)  is not periodic the series (24) can still be used to represent it over the interval
0≤t≤T .

Using the trigonometric identity

cos(u−v)=cos(u)cos (v)+sin(u)sin(v )

we can express a Fourier series in the form

x (t)=∑
n=0

∞

An cos (nω0 t−θn) (27)

with

an= An cos (θn)
bn= Ansin (θn)

(28)

Another useful form is

x (t)= ∑
n=−∞

∞

cn e j n ω0 t (29)

with

cn=
1
T

∫
0

T

x (t )e− j nω0 t dt (30)

If x (t )  is a real signal, then for n≥0 , cn=An e− j θ n  and c−n=cn
∗ .

Laplace transform
The  Laplace  transform  derives  its  usefulness  from  the  fact  that  a  homogeneous,  ordinary
differential equation with constant coefficients, such as
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ẍ+b ẋ+c x=0 (31)

has solutions of the form

x (t )=a e st (32)

Since 
d
dt

xst=s est , plugging (32) into (31) results in

(s2+bs+c )e st=0 (33)

Since est  is never zero, this requires

s2+bs+c=0 (34)

We have converted an nth order ODE into an nth order polynomial. 

The “two-sided” Laplace transform of x (t )  is defined as

X (s)=∫
−∞

∞

x (t )e−st dt (35)

where s= σ+ j ω  is an arbitrary complex number. If x (t)=0 ,t <0  this becomes the “normal”
Laplace transform

X (s)=∫
0

∞

x (t )e−st dt (36)

That is most often used in applications. The Laplace transform of a unit step us(t )  is

X (s )=∫
0

∞

e−st dt=
e− st

−s |
0

∞

=
1
s

(37)

The transform of x (t)=e−at us(t )  is

X (s )=∫
0

∞

e−at e− st dt= e−(s+a)t

−(s+a)|0

∞

= 1
s+a

(38)

Given a Laplace transform, the time-domain function can be calculated using a formal  inverse
Laplace transform

x (t)= 1
j 2π ∫

σ − j ∞

σ + j ∞

X (s)est ds (39)

where s must be appropriately chosen so the integral converges. However, in practice the inverse
Laplace transform is calculated using a partial fraction expansion (reviewed below) and (38).

Fourier transform
Substituting s= j ω  in (35) we obtain the Fourier transform

X ( j ω)=∫
−∞

∞

x( t)e− j ω t dt (40)

The inverse Fourier transform is
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x (t)=
1

2π ∫
−∞

∞

X ( j ω)e j ω t d ω (41)

This represents  x (t)  as a superposition of complex exponentials  e j ω t .  It’s analogous to the
Fourier series (29), but can represent arbitrary non-periodic functions. 

Convolution theorem
Let y (t)=h(t )∗x (t ) , that is

y (t)=∫
−∞

∞

h(t−τ) x (τ)d τ (42)

The Laplace transform of y (t)  is

Y (s )=∫
−∞

∞ [∫
−∞

∞

h(t−τ)x (τ )d τ]e− st dt (43)

Let u=t−τ , du=dt . Then the above expression becomes 

Y (s )=∫
−∞

∞

∫
−∞

∞

h(u )x (τ )e− s(u+τ) d τ du=∫
−∞

∞

h(u)e−su du ∫
−∞

∞

x( τ)e−s τ d τ (44)

Therefore

Y (s)= H (s) X (s ) (45)

This  is  the  convolution  theorem.  The  Laplace  transform of  a  convolution  is  the  product  of
Laplace transforms. With s= j ω  we obtain the Fourier transform version

Y ( j ω)= H ( j ω) X ( j ω) (46)

Partial fraction expansion
In applications of the Laplace transform to LTI systems, we typically deal with transforms that
are rational functions of s (ratio of polynomials in s). Let the Mth order numerator polynomial of
H (s)  be b(s )  with roots z1 , z 2 ,… , z M . These roots are the zeros of H (s) . Let the Nth order

denominator polynomial be a (s)  with roots p1 , p2 ,… , p N . These are the poles of H (s) . We
assume roots can be real or complex. Complex roots come in conjugate pairs. For simplicity we
will assume there are no repeated roots. We write

H (s)=
b (s)
a (s)

=
b0(s−z1)(s− z2)⋯(s−z M )
(s− p1)(s− p2)⋯(s− pN )

(47)

We assume H (s)  is a proper rational function with N >M . Then we can express it as a partial
fraction expansion of N terms, one for each pole 

b0(s−z1)(s− z2)⋯(s−z M )
(s− p1)(s− p2)⋯(s− p N)

=
A1

s− p1

+
A2

s− p2

+ ⋯+
AN

s− pN

(48)

Using (38) we have

h( t)= [ A1e
p1t+ A2 e

p2 t+ ⋯AN e
p N t ]us(t ) (49)
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For h( t)  to not “blow up” at t=∞ , all real poles must be non-positive ( p i≤0 ). For a complex
pole p i=σ i+ j ω i  we get a term

Ai e
σi t e j ωi t (50)

and we require σi≤0 . In general the real part of every pole must be non-positive for h( t)  to
remain finite as t→∞ . 

Note that for any complex pole we will also have a conjugate term

Ai
∗eσi t e− j ωi t (51)

The sum of these is real

2eσi t Re[ Ai e
j ωi t ]=2|Ai|e

σi t cos (ωi t +θi) (52)

where θi  is the argument of Ai . 

A few useful Laplace transform pairs

x (t) X (s)

δ (t) 1

us(t )
1
s

t n us(t)
n!

sn+1

e−at us( t) 1
s+a
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