AMPS

Introduction

The first cellular networks used analog FM voice channels. These are the so-called "*first-generation*" (1G) cellular systems. In the US the first-generation system is called AMPS, for Advanced Mobile Phone System. It was deployed in 1983. Although AMPS is being phased out, it is still an important component of the cellular infrastructure. Digital phones that cannot connect to a digital base station, as is often the case in rural settings, typically go into an "analog roaming" mode in which they access the AMPS network.

Radio Characteristics and Reuse Pattern

AMPS, like AM/FM radio and analog TV broadcasts, uses Frequency Division Multiple Access (FDMA). In FDMA we divide the available bandwidth into multiple frequency intervals to form channels. Each conversation makes use of a particular frequency interval for the entire duration of a call. This is illustrated in Fig. 34.1.

Amps uses 30-kHz-wide analog FM for voice channels, and 30-kHz-wide binary FSK control channels. Base on empirical studies, an S/I of 18 dB is considered a minimum for satisfactory performance. Assuming a propagation constant n = 4 our formula relating S/I to N and n reads

$$\frac{\left(\sqrt{3N}\right)^4}{6} = 10^{\frac{18}{10}} \tag{10.1}$$

From which we find N = 6.5. Therefore, we require an N = 7. For smaller values of *n* sectoring might be required to achieve an acceptable *S/I*. Therefore AMPS specifies N = 7, but allows either omni cells or 120° sectoring.

Analog FM voice channels are limited to audio frequencies less than 4 kHz. This is similar to the frequency response of traditional cooper-wire analog phone service, referred to as "toll quality." AMPS channels use a frequency deviation of $\Delta f = 12$ kHz giving a frequency modulation index of about $\beta = 3$. The binary FSK control channels use a frequency deviation $\Delta f = 8$ kHz at a bit rate $R_b = 10$ kbps. Recall that minimum-shift keying would require $\Delta f = R_b/4 = 2.5$ kHz. Since the deviation used (8 kHz) is considerably more than 2.5 kHz, the spectral efficiency of AMPS control channels is not very good. In fact, it is only 1/3 bps/Hz. However, this enabled reliable demodulation with a less-than-ideal FSK receiver, an important plus more than twenty some years ago when AMPS was being developed.

Figure 34.1: Frequency Division Multiple Access (FDMA). Each call has exclusive use of a particular frequency interval for the duration of the conversation.

Frequencies

Originally 40 MHz of spectrum was allocated for the AMPS system with 20 MHz each for uplink and downlink channels. In 1989 an additional 10 MHz was added to meet increased demand. This two-step allocation resulted in a somewhat convoluted labeling and distribution of channels.

AMPS channels have a bandwidth of 30 kHz (0.03 MHz). Each channel is assigned a number n where $1 \le n \le 799$ or $991 \le n \le 1023$. The result is a total of 832 channels covering a bandwidth 832(0.03) = 24.96 MHz. The actual FCC allocation is 25 MHz which allows for some "guard band" to avoid interference with other radio frequencies. Channels are "full duplex," meaning that each n corresponds to two 30-kHz channels, one for the uplink (mobile to base) and one for the downlink (base to mobile). The uplink and downlink frequencies are always 45 MHz apart and are given by

$$f_{n,up}(\text{MHz}) = \begin{cases} 825 + 0.03n & \text{for} \quad 1 \le n \le 799\\ 825 - 0.03(1023 - n) & \text{for} \quad 991 \le n \le 1023 \end{cases}$$
(34.1)
$$f_{n,down}(\text{MHz}) = f_{n,up} + 45$$

There are no channels 800 through 990.

In order to provide competition in each cellular market, the FCC divides the 832 channels into two blocks of 416 channels. These blocks are assigned to two companies, typically through an FCC spectrum auction. The two companies are referred to as the "A carrier" and the "B carrier." The B carrier is typically the local "wireline" company while the A carrier is typically a

company that does not provide wireline service in the area served. The A carrier uses channels 1-333, 667-716 and 991-1023. The B carrier uses channels 334-666 and 717-799. (As mentioned above, the channel notation and allocation is somewhat confusing.)

AMPS uses an N = 7 reuse pattern, with or without 120° sectoring. Accordingly each carrier's 416 channels are arranged into 21 subsets of 19 or 20 channels, as shown in Figs. 34.1 and 34.2.

For N = 7 with 120° sectoring, subsets 1A, 1B, and 1C could be used for the three sectors in the first cell, subsets 2A, 2B, and 2C for the three sectors in the second cell, and so on up to 7A, 7B, and 7C. This method insures that channels used within a sector are separated by at least $21 \cdot 30 = 630$ kHz, for example, subset 1A uses channels 1, 22, 43, etc. Also, channels in adjacent sectors are separated by at least $7 \cdot 30 = 210$ kHz, for example subset 1B uses channels 8, 29, 50, etc. that are 210 kHz separated from the corresponding channels in subset 1A. This frequency separation helps minimize so-called *adjacent-channel interference*. In a radio receiver bandpass filters are used to separate a channel from other channels. Since perfect bandpass filters do not exist, some power from nearby channels may leak into the receiver. If there is a lot of power at frequencies adjacent to the desired channel, this creates adjacent-channel interference. By distributing channels such that no cell or sector uses adjacent channels, this problem is minimized.

Twenty-one of the channels in each block are used for *control channels*: 313-333 for the A carrier and 334-354 for the B carrier. For N = 7 with 120° sectoring this allows each sector to have a unique control channel. The result is one control channel and about nineteen voice channels per sector.

Often an N = 7 omni reuse pattern is used, that is, sectoring is not implemented. In this case three channel subsets can be used in each cell, for example, 1A+1B+1C could be used in cell 1, 2A+2B+2C could be used in cell 2, and so on. The worst-case *S/I* is of course lower (by about 5 dB) but if traffic is generally light then typically the interference is considerably less than the worst-case scenario. This is often true in rural areas, for example.

However, downlink control channels are always transmitting, so the worst-case scenario always holds for them. On the other hand, since only one control channel is needed per cell and there are twenty-one, three different subsets of seven control channels are available to be assigned to different N = 7 clusters. The result is an improved *S/I* on the control channels that somewhat offsets the lack of sectoring. We therefore end up with one control channel, and about 57 voice channels per cell.

1A	2A	3 A	4 A	5A	6A	7A	1B	2B	3B	4B	5B	6B	7B	1C	2C	3 C	4 C	5 C	6C	7C
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126
127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147
148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189
190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210
211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231
232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252
253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273
274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294
295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312			
313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333
																		667	668	669

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 991 992 993 994 995 996 997 998 999 1000 1001 1002 712 713 714 715 716 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

> Figure 34.1: A-carrier AMPS channel allocation. High-lighted row contains control channels; the rest are voice channels. (After Rappaport.)

1A	2A	3 A	4 A	5A	6A	7A	1B	2B	3B	4B	5B	6B	7 B	1C	2 C	3 C	4 C	5 C	6C	7C
334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354
355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375
376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396
397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417
418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438
439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459
460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480
481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501
502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522
523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543
544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564
565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585
586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606
607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627
628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648
649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666			
					717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732
733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753
754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774
775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795
796	797	798	799																	

Figure 34.2: B-carrier AMPS channel allocation. High-lighted row contains control channels; the rest are voice channels. (After Rappaport.)

System Capacity

An AMPS system with N = 7 and 120° sectoring provides about 19 channels per sector. For a PB (GOS) of 2% this gives an offered traffic intensity of 12.33 Erlangs/sector, and about 36 Erlangs of carried traffic per cell. For the omni case, we have about 57 voice channels, and this gives about 46 Erlangs of carried traffic per cell.

AMPS cells can have radii of upwards of 32 km (20 mi). Due to limited mobile transmit power, this can be problematic for the uplink. Accordingly two-antenna diversity reception is typically employed at base stations.

References

1. Rappaport, T. S., *Wireless Communications: Principles and Practice*, Prentice Hall, 1996, ISBN 0-13-375536-3.