
Encryption and Data Security 32.1

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 06/07/17

Encryption and Data Security

Introduction

A wireless channel provides many benefits, mobility being one of the greatest, but it also has

some major drawbacks. One is a complete lack of physical security. With a wired channel we

can secure communications that go over the channel by securing the physical medium. For

example, your (wired) phone conversations are fairly secure because someone who climbs a

telephone pole to tap into your phone line is likely to get noticed and arrested. On the other hand,

if you talk over an FM-radio link (as you do with an analog cellular phone), anyone nearby with

an appropriate FM receiver can listen in without you knowing about it. Although in the U.S. it is

illegal to snoop on cellular phone channels, it is nearly impossible to tell if someone is doing so

because the channel is “on the air” for everyone to access.

With a digital communication system we can employ encryption. The problem we face is how to

encode a sequence of data bits so that unauthorized snoopers cannot decode them. The original

data is called the plaintext while the encrypted data is called the ciphertext.

One-Time Pad

The only encryption technique know to be perfectly secure is the so-called one-time pad. The

basic idea is that the TX adds the plaintext to another message, the key (the “pad”), which has a

length as long as the plaintext to create the ciphertext. The RX subtracts the key from the

ciphertext to recover the plaintext. Provided the key is truly random, is only used once, and, of

course, no one other than the TX and RX have access to it, this technique provides perfect

security.

For example, let’s say we wish to send messages consisting of the 26 letters and spaces. We can

number the characters as follows:

 _ a b c d e f g h i j k l m n o p q r s t u v w x y z

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Let’s say our plaintext is secret and our key is aziwhq. We add the plaintext and key character

by character to get the ciphertext. The addition is performed “modulo 27,” meaning that if we get

a sum of 27 or more we subtract 27 so as to end up in the range 0 to 26. For the first character we

have s+a which corresponds to 19+1=20 which in turn is t. Likewise, e+z corresponds to

5+26=31 and 31-27=4 which is d. In this manner we find the ciphertext tdlnmj.

 plaintext: secret

 key: aziwhq

ciphertext: tdlnmj

The receiver takes the ciphertext tdlnmj and subtracts the pad aziwhq to get the plaintext

secret. Again, the arithmetic is done modulo 27, so if we get a difference less than 0, we add 27

to get back into the interval of 0 to 26. For example, t-a is 20-1=19 which is s, d-z is 4-26=-22

and –22+27=5 which is e, and so on.

Encryption and Data Security 32.2

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 06/07/17

This method provides perfect security because for any ciphertext there is a key that will generate

any plaintext (of the corresponding length). For example, applying the key akrydf to our same

ciphertext recovers the message stupid. Since the key is completely random, the plaintext is just

as likely to be stupid as to be secret, or indeed, any six-letter message.

ciphertext: tdlnmj

 key: akrydf

 plaintext: stupid

Because of the perfect security it provides, the one-time pad is the method of choice for highly

sensitive government and military information.

However, there are some big drawbacks to the one-time pad. The key must be truly random. For

example, you cannot use a computer algorithm, such as a “random number” function, to generate

the key. Second, you can only use the key once. Third, the key has to be as long as the message

you are encoding. The perfect security comes from the fact that there are many possible keys as

there are messages.

Substitution Ciphers: DES

A generally more practical approach is the substitution cipher. The idea is very simple. List all

your symbols in a column. In the next column list some permutation of these symbols. This is

your lookup table. To encrypt, find the plaintext symbol you want to send in the first column and

substitute the ciphertext symbol in the second column. To undo this find the ciphertext symbol in

the second column and substitute the plaintext symbol in the first column. For example, if your

symbols are letters then you might have something like

a b

b d

c a

d e

e c

etc etc

and the plaintext bade would become the ciphertext dbec. If you have N symbols, then there are

!N possible permutation tables of this sort. Applied in such a simple manner, this would not be

very effective because you could use the know frequencies of certain letters to figure out the

substitutions. In practice much larger groups of symbols are used and some sort of pre-

randomization of the message, for instance through entropy coding, can be used.

The Data Encryption Standard is a digital substitution cipher developed for the U.S. government

that operates on 64-bit blocks of data. A 64-bit key K generates the lookup table. Only 56 bits are

independently chosen, the remaining bits are error-correcting parity bits. The encryption and

decryption operations can be represented as

)(

)(

ODI

IEO

K

K




 (32.1)

Encryption and Data Security 32.3

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 06/07/17

The heart of the DES algorithm, of course, is the way in which the lookup table is generated

from the key.

The security of DES comes from two facts. First, there is no known algorithm for breaking it

other than a brute force search over all possible keys. Second, since 1656 1072  , it should be

practically impossible to implement a brute force search. Actually, while this was true in the

1970’s, when DES was developed, state-of-the-art (circa 2000) parallel computers have the

capability of breaking DES by brute force in about 24 hours. As an interim fix, triple DES can be

implemented. Typically this involves choosing two 64-bit keys K1 and K2, which is the

equivalent of a single 128-bit key. We then implement a look up table as a cascade of DES

operation. The encryption and decryption operations are

  
  )(

)(

121

121

ODEEI

IEDEO

KKK

KKK




 (32.2)

Since the extra 56 free bits imply a factor of about 16107  times as many possible look up tables.

In light of the shortcomings of DES, a new Advanced Encryption Standard (AES) has been

devised. This operates on 128-bit blocks of data and allows 128-, 192-, or 256-bit keys.

Public Key Encryption

Substitution ciphers such as DES are very powerful and convenient to implement, but they still

retain the problem of requiring secure delivery of the key. This requires a secure communication

channel, but how do you set up that secure channel in the first place? Public key encryption is an

ingenious way to get around this problem.

Public key encryption exploits the concept of a one-way function. This is a function that is easy

to compute but very difficulty to invert. As a somewhat trivial example, with pencil and paper it

is relatively easy to square a number, but difficult to calculate square roots.

Exponentiation is central to public key algorithms. It is relatively easy to calculate qp where p

and q are two integers. Even for huge integers this can be accomplished efficiently by the

square-and-multiply technique. q is expressed as a binary number, i.e., as a sum of powers of 2.

For example, 9 is binary 1001, that is, 12189 3  . Then
3219 ppp  . Since   22223

pp 

this involves only taking squares of numbers and multiplying. The technique also works when

the operations are performed modulo some integer.

Diffie-Hellmen

The one-way function in the Diffie-Hellmen algorithm is exponentiation modulo some integer.

As we’ve seen exponentiation is relatively simple. The inverse – taking a logarithm modulo

some integer – is very difficult.

 Public integers  and q are chosen.  must be a “primitive root” of q which implies

that for any 10  qi there is a unique 10  qb such that qb i mod . i is the

discrete logarithm of b.

Encryption and Data Security 32.4

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 06/07/17

 User k selects a private key kx and calculates a public key qy kx

k mod .

Then User 1 and User 2 can set up a secure channel as follows.

 User 1 looks up User 2’s public key to calculate qyK
x

mod1

2 .

 User 2 looks up User 1’s public key to calculate the same key qyK
x

mod2

1 .

They are guaranteed to get the same key K because     qqqq
xxxx

modmodmodmod
1

2
2

1  .

This is the discrete version of     1
2

2
1

xxxx
 . A third user cannot obtain K because he does not

have access to the private keys. To break the cipher you would have to invert qy kx

k mod .

There is no known algorithm for doing this other than a brute force search. If  and q are really

large, then this is practically impossible.

RSA

The RSA public key algorithm was developed by Ronald Rivest, Adi Shamir, and Leonard

Adleman in 1977. The one-way function here is the representation of an integer by prime factors.

Each user generates public and private keys as follows:

 Choose two large prime numbers p and q known only to yourself.

 Calculate pqn  .

 Choose a number ne  such that e and)1)(1( qp have no common factors.

 Find a number d such that
)1)(1(

1





qp

ed
 is an integer.

 Your public key is),(en . Your private key is),(dn .

Then User 1 can send a secure message to User 2 using the following steps

 To send a message m, User 1 calculates the cipher 2mod2 nmc
e

 where),(22 en is User

2’s public key.

 The cipher c is sent over a public channel.

 User 2 calculates ncm
d

mod2 where),(22 dn is his private key.

The relationship between e and d insures that   22 modmod
2

2 nnmm
de

 . In general for 23 dd  ,

  mnnm
de

modmod
3

2 . To break the cipher you’d need to factor 222 qpn  , so the security of

RSA comes from the fact that there are no known algorithms for prime factorization, other than a

brute force search. By choose really large numbers p and q this can be made practically

impossible.

References

1. http://www.rsasecurity.com/ (2002-6-17)

http://www.rsasecurity.com/

Encryption and Data Security 32.5

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 06/07/17

2. http://www.odci.gov/csi/books/venona/venona.htm (2002-7-3)

3. http://csrc.nist.gov/cryptval/des.htm

http://www.odci.gov/csi/books/venona/venona.htm
http://csrc.nist.gov/cryptval/des.htm

