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Audio Coding 

Introduction  

A central principle of data compression is that if a data stream has some describable structure 

then you can use that to reduce the number of bits need to represent the stream. For voice 

streams, the structure arises from the amplitude statistics of speech, and from the spectral 

characteristics due to the nature of the vocal tract and human language.  

Speech PDF 

Empirically, in speech, low sound levels occur much more frequently than high levels. If )(tx  is 

a speech signal, then a pretty good model for the probability density function of x is the 

Laplacian distribution 
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Here 
22,0 xxx  . When viewed on a semilog plot, this has a triangular shape. Figure 31.1 

shows an example. 

Quantization 

To go from the analog domain to the digital domain, we need to sample and quantize the signal 

)(tx . We know from the Sampling Theorem that the sampling frequency must be at least twice 

the highest frequency component of )(tx . For phone-quality audio, a sampling frequency sf of 8 

kHz is standard. For CD-quality sound a sampling frequency of 44.1 kHz is standard.  

Quantization involves limiting ourselves to a finite number of discrete signal levels. If we have L 

levels then this will translate into L2log  bits per sample. Our bit rate is then Lfs 2log . Clearly 

we want L to be as small as possible. We choose some quantization function )(xQy   that 

produces an output kyy   for an input in the interval 1 kk xxx . We then assign L2log  bit 

binary codes to those levels.  

As an example of a uniform quantizer, consider 

 )/(round)(  xxQ  (31.2) 

where “round” gives the nearest integer. Here  is the step size. This is illustrated in Fig. 31.2. 

The output is  kyk  for  )5.0()5.0( kxk . The difference between y and x is the 

quantization noise.  
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Figure 31.1: PDF of a few seconds of speech. Solid blue curve is 

measured pdf; dashed red curve is Laplacian distribution. 

The variance of the quantization noise is 
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We can then define a signal-to-quantization noise ratio 
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For the uniform quantizer we can calculate 
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Figure 31.2: Uniform quantization.  
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where kp  is the probability of being in the kth interval, so the probability density there is 

approximately /kp . Clearly having a smaller step size leads to smaller quantization noise. But 

we also need to have enough steps to cover the full range of x. If maxxx   and we have L steps, 

then 
L

xmax2
 . Plugging this into (31.5) we find 
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If RL 2 , R is the bit rate in terms of bits per symbol and 
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We gain 6 dB of S/N for each additional bit. For a uniform pdf 
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and 

 RNS dB 6/   (31.9) 

This is also referred to as the dynamic range. For example, with 16R  bits, we get 96 dB, 

which represents CD quality, audio.  

From (31.3) we see that more quantization error comes from those values of x where px is large. 

It would make sense, therefore, to have finer quantization in regions of large px and coarser 

quantization in regions of small px. This leads to non-uniform quantization. We first pass x 

through a compressor )(xc  and then perform uniform quantization. That is ))(( xcQy  . We 

choose maxmax )( xxc   so that c covers the same range as x, but the slope can vary with x. If the 

slope dxdc /  is large, then small changes in x produce large changes in c and hence cover 

relatively more quantization levels. At the receiver we expand using the invese of )(xc  to 

recoever x. The combination of compressor and expander is referred to as a compander. As an 

example, the so-called -law is 
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The resulting quantization is illustrated in Fig. 31.3 for 255 . Near 0x  where the pdf is 

largest, we can define the compander gain as  
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because the effective step size is reduced to CG/ . For the -law compander with 255 , 

46CG , and dB 3346log20  . This is better than the equivalent of 5 bits of improvement, so 

an 8-bit -law quantizer can give, on average, better performance than a 12-bit uniform 

quantizer. A phone-quality standard is an 8-bit -law quantizer at an 8 kHz sampling rate. This 

produces a 64 kbps data stream. 
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Figure 31.3: Non-uniform quantization using -law compander. 

Relatively more quantization levels are allocated to small values of 

x. 

Predictive Coding 

The idea of predictive coding is that if you can predict a signal, there is no need to have it 

transmitted to you. This is illustrated in Fig. 31.4 
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Figure 31.4: Predictive coding.  
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The source signal nx  is compared to a mathematical model of the source ny . The difference is 

the error signal ne . If transmitter and receiver share the same source model, then we need only 

transmit the error signal. If our model is a good one, then the error signal should require far 

fewer bits than the source itself. If the model were perfect then there would be no error at all. 

The difficultly here is coming up with good models for speech that are also mathematically 

tractable. Linear models are quite practical in this respect. 

Linear Predictive Coding 

A very simple source model is: “The source is a constant.” Let nx  be the values produced by the 

source and ny  the modeled values. The “source is constant” model is then 1 nn xy , that is, the 

current value is equal to the last value. The error is nnn yxe  . More generally we might use 

11  nn xay  where 1a  is some constant. This is a first-order linear predictor.  

A second order linear predictor uses a straight line to model the source. If the last two source 

values were 21,  nn xx , then the model is )( 211   nnnn xxxy . More compactly we can write 

212   nnn xxy . More generally we would have 2211   nnn xaxay . 

An Mth order linear predicative coder predicts the current value of the waveform from a linear 

combination of the previous M values: 
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If the prediction is exact then nn xy  . Otherwise there is some error ne  and we write 

 nnn eyx   (31.13) 

It turns out that a waveform consisting of K arbitrary, damped sinusoid components 
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can be perfectly reconstructed, i.e., 0ne , by an LPC of order KM 2 , starting with the first 

M samples of the waveform. 

 

Example 31.1 

Let )cos()cos( 222111
21 


neAneAx

nn

n  with 31 A , 005.01  , 

5.01  , 5.11  , 22 A , 01.02  , 2.02  , 0.11  . LPC coefficients for 

a 4th order predictor were calculated as 3.7262    1 a , 4679.52 a , 

7418.33 a , and 0101.14 a . The following figure shows the original 

waveform and the LPC output. 
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The circles represent the original waveform and the line is the LPC output. We 

see that they agree perfectly, i.e., 0ne . 

On the other hand, adding an additional sinusoidal term to nx , )35.0cos( n  in the 

example shown in the following figure, creates a waveform that can not be 

exactly described by a 4th order predictor.. 
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In this case the error signal ne  is non-zero. Increasing the order to 6 would, 

however, allow perfect prediction. 

 

What is the “secret” of an LPC? Let’s recall the theory of linear ordinary differential equations 

with constant coefficients. A general Mth order equation has the form: 
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The solutions are of the form ste . The values of s are obtained from 
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There are M roots of this equation. The following is an Mth
  order “difference” equation: 

 02211   MnMnnn xbxbxbx   (31.17) 

We look for solutions of the form n

n zx  . Plugging in we get 

 02

2

1

1   Mn

M

nnn zbzbzbz   (31.18) 

or 

 01

2

2

1

1  



MM

MMM bzbzbzbz   (31.19) 

This is an equation of the same form as (31.6), and there will be M roots. If we identify tnt   

and tsez  , then sttsnn eez   . That is, the solutions of the Mth order difference equation are 

just sampled versions of the solutions of the Mth order differential equation.  

(31.17) can be rearranged to give  
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where nn ba  .  

 

Example 31.2 

Here we have 256 samples of speech coded at 8 bits per sample. An 8th order 

linear predictor is used. The error signal is coded with 2 bits per sample. 
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In this way we achieve nearly 4x’s compression with reasonable signal quality. 

An Mth order LPC will perfectly predict the signal nx  if it contains precisely M/2 sinusoidal 

components.  
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Setting 0/
2

 kn ae  for Mk 1  we get the equations that define the optimal predictor 

coefficients. With the definition knnxx xxkR )(  these take the form 

 rRa   (31.23) 

where the vector a has elements ka  and the elements of the matrix R and vector r are 
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The solution is 

 rRa
1  (31.25) 
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CELP 

Code Excited Linear Predictors dispense with sending the error signal ne . Instead they have a 

library of “codes,” (i.e., “typical” error signals). Each code is put through the linear predictor and 

it is noted how well that matches the actual voice signal. Then the address of the best-match code 

is sent along with the predictor coefficients.  
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