
Source Coding 30.1

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 05/31/17

Source Coding

Introduction

We have studied how to transmit digital bits over a radio channel. We also saw ways that we

could code those bits to achieve error correction. Bandwidth is our basic resource and we want to

use it as efficiently as possible. This translates into wanting to send as few bits as possible to

meet our communication objectives. Source coding, or compression, attempts to achieve this

objective. It takes advantage of the fact that in many cases we are not sending random bit

patterns but, instead, structured data. If we can describe the structure in our data we can often

send the same, or nearly the same, information with far fewer bits.

There are two main types of compression techniques: lossless and lossy. In lossless compression

the coding/decoding process recreates the source data exactly. “Zip” files are an example of

lossless compression. In lossy compression we allow the coding algorithm to throw away parts

of the source data that we consider “unimportant” in some subjective sense. In this case we allow

ourselves the flexibility of recreating the source data “close enough.” Examples are JPEG

images, MPG audio files and voice coding for digital communications. In this lecture we look at

lossless compression.

Entropy Coding: Huffman Coding

Suppose we have a source X that produces N symbols with each symbol being independent of the

previously transmitted symbols. An obvious way to code this source would be to place the

symbols in a table, number them from 0 to 1N and express these numbers in a binary system

using NM 2log bits. Then we then communicate the M bits per symbol that denotes its place

in our table. For example, consider the letters of the alphabet (26), their capitals (26), space (1),

and eleven essential punctuation marks for a total of 64 symbols. If we put all 64 symbols in a

table and numbered them from 0 to 63, then we would require 664log2  bits per symbol to

convey an entry from this table. However, in normal text certain symbols (space, e, and so on)

occur more frequently than others (such as z, ?, and so on). So maybe we could do better if we

had a code in which fewer bits were used for frequent symbols and more bits for rare symbols.

How few bits per symbol could we get away with? Let kp be the probability of occurrence of the

kth symbol. The theoretical minimum number of average bits per symbol required is given by the

entropy of the source:













N

k

kk

N

k k

k

pp

p
pXH

1

2

1

2

log

1
log)(

 (30.1)

If all the probabilities are equal, so that Npk /1 , then NXH 2log)( . If the probabilities are

not equal, then NXH 2log)( .

Source Coding 30.2

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 05/31/17

So, in theory we should be able to encode our source using only)(XH bits. But how do we do

this? Huffman coding provides an algorithm that approaches this theoretical limit. To illustrate,

suppose we have a source that can generate any of the following eight words with the

probabilities given. These eight words are our eight “symbols.” (The following example is from

Pierce, An Introduction to Information Theory).

the 0.50

man 0.15

to 0.12

runs 0.10

house 0.04

likes 0.04

horse 0.03

sells 0.02

We list the symbols in order of decreasing probability. We assign bit values “1” and “0” to the

last two entries and then combine them into a “meta-symbol.” In this case horse is assigned “1,”

sells is assigned “0”, they are combined into the meta-symbol “horse sells” which has a

probability of 5.02.03.0  . We then resort our symbols in order of decreasing probability.

the 0.50

man 0.15

to 0.12

runs 0.10

horse sells 0.05

1 0

house 0.04

likes 0.04

We continue to assign bit values of “1” and “0” to the last two symbols followed by

combination into a meta-symbol and resorting of the symbol list in order of decreasing

probabilities.

the 0.50

man 0.15

to 0.12

runs 0.10

house likes 0.08

1 0

horse sells 0.05

1 0

When we combine existing meta-symbols into new meta-symbols, we append the “1” and “0” bit

values to any bit values the symbols currently have, as shown in the next step where we combine

house likes and horse sells into house likes horse sells.

the 0.50

man 0.15

house likes horse sells 0.13

11 10 01 00

to 0.12

runs 0.10

Source Coding 30.3

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 05/31/17

We continue this process until all the symbols have been combined into one meta-symbol that

has probability 1.0.

the 0.50

to runs 0.22

1 0

man 0.15

house likes horse sells 0.13

11 10 01 00

the 0.50

man house likes horse sells 0.28

1 011 010 001 000

to runs 0.22

1 0

the 0.50

man house likes horse sells to runs 0.50

11 1011 1010 1001 1000 01 00

the man house likes horse sells to runs 1.0

1 011 01011 01010 01001 01000 001 000

At this point we can read off the codes for each of the symbols as shown in Fig. 30.1.

symbol code prob bits prob*bits entropy

the 1 0.50 1 0.500 0.500

man 011 0.15 3 0.450 0.411

to 001 0.12 3 0.360 0.367

runs 000 0.10 3 0.300 0.332

house 01011 0.04 5 0.200 0.186

likes 01010 0.04 5 0.200 0.186

horse 01001 0.03 5 0.150 0.152

sells 01000 0.02 5 0.100 0.113

2.260 2.246average bits per symbol

Figure 30.1: Huffman coding example.

This process achieves compression by assigning shorter codes to symbols with higher

probability. If kn is the number of bits assigned to the kth symbol, then the expected number of

bits per symbol is

 



N

k

kknp
1

symbol/bits (30.4)

This is shown for our example in the “prob*bits” column. The entropy terms kk pp log are

given in the next column. In this case the Huffman code uses on average 2.260 bits/sample while

Source Coding 30.4

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 05/31/17

the entropy is 2.246, so the code has come very close to the theoretical limit. Since there are 8

symbols and 38log2  , we compress our data to %753/26.2  .

To transmit the sentence “the man runs to the house” we’d concatenate the corresponding codes

1, 011, 000, and so on to get 1011000001101011. How would you decode this? If you look at the

code words in Fig. 30.1 you can see that none of the shorter code words appear at the start of a

longer code word. The one-bit code is “1” and all of the longer codes start with “0.” So when we

see the “1” at the start of our bit stream we know it’s the code for “the.” After that we have

011000001101011. This starts with “0,” so it’s a three- or five-bit code word. “011” is the code

word for “man” and none of the other code words start off with 011, so the next symbols must be

“man.” We continue in this manner until we’ve decoded the entire message.

Building a Symbol Table: The LZW Algorithm

Huffman coding by itself is somewhat limited because in most real-world sources, symbols are

not independent. For example, consider English text. English text is not a random sequence of

letters but is structured into words and sentences. If you read “English text is not rando” and you

are asked what the next letter is, you are probably not going to choose a letter at random. It is a

very good bet that “m” is the next letter. Clearly you are using an internal “dictionary” to

recognize text patterns.

To make the most effective use of entropy coding we need a good dictionary, or symbol table,

that lists all recurring patterns in our source data. The LZW algorithm is a remarkably simple, yet

highly effective method for building dictionaries. Figure 30.2 shows the LZW algorithm.

Read CHAR

Is STR+CHAR in Dictionary?

 Yes: set STR = STR+CHAR

 No: output STR

 Add STR+CHAR to Dictionary as a new Symbol

 Set STR = CHAR

Figure 30.2: The LZW algorithm. Initially STR is empty and the

Dictionary contains all possible single characters. When the

algorithm encounters a repeated pattern of characters it defines

that as a symbol and enters it into the Dictionary.

We assume our source data consists of “characters.” These could be text characters, or more

generally bytes of data, say, from a digital image. Our goal is to find strings of characters that

occur multiple times in our source data and to put those strings into a dictionary.

To illustrate the algorithm, let’s look at the example shown in Fig. 30.3. Here our source data is

the text message ababcabcd…

Source Coding 30.5

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 05/31/17

To begin, our dictionary contains as symbols all possible single characters – all letters – and we

have a string buffer named STR that is initially empty. In the first step we read the character “a”

into CHAR. STR+CHAR is therefore “a”. This is in the Dictionary (all single letters are), so for

step 2 we assign this to STR. We then read “b” into CHAR. Now STR+CHAR is “ab”. This two-

letter symbol is not in the Dictionary, so we output STR, which is “a”, add the new symbol “ab”

to the Dictionary and for step 3 set STR = CHAR, which is “b”. We then read in the character

“a” and so on. If you follow through this example with the algorithm of Fig. 30.2 you’ll see that

every time a pattern of letters is repeated the LZW algorithm adds that to the Dictionary as a new

symbol.

 STR CHAR DICT OUT

1 a

2 a b ab a

3 b a ba b

4 a b

5 ab c abc ab

6 c a ca c

7 a b

8 ab c

9 abc d abcd abc

Figure 30.3: LZW algorithm example demonstrating the

generation of a symbol table.

In this manner, we can very simply and effectively generate a symbol table for use with Huffman

coding. The LZW algorithm and Huffman coding, and variations, are used to compress GIF

images, ZIP files and in many other applications.

Rice Coding

Huffman coding has the drawback that it requires quite a few steps of computation, especially for

a large number of symbols. Additionally, you need to transmit the list of code words, for

example, the table in Fig. 30.1. Finally, you need to have access to the entire message to

calculate the probabilities and the codes before you can begin transmitting. In some cases it is

preferable to use a sub-optimal code that is easier to work with. An example of this is Rice

Coding. This is use extensively as a component of lossless audio and video coding. In these

systems, as we’ll see in the next lecture, your symbols are often binary numbers representing

Source Coding 30.6

EE432: RF Engineering for Telecommunications Scott Hudson, Washington State University 05/31/17

residuals between, say, an audio signal and a signal model. These residuals, and speech in

general, tend to have exponential distributions. That is, the probability that the signal will take on

a value x is proportional to
 /x

e for some parameter . If the model is good, then the residuals

are typically quite small, i.e.,  is small. If the residuals were always very small, then you could

use just a few bits to represent them. Sometimes, however, you will have large residuals and you

have to be able to accommodate these.

In Rice Coding you choose an integer parameter k and calculate km 2 . Then to encode a

number n,

1. Calculate integers q and r such that rmqn  .

2. Output q 0’s followed by a 1. If q is zero just output a 1.

3. Output the binary representation of r using k bits.

For example, say 3k , so 82  km , and you want to encode the numbers 21 and 3. We have

52821  so 2q and 5r ., is 101. So to code 21 we output 2 0’s, followed by a 1,

followed by 101, which is the binary representation of 5 using 3 bits, to get 00110121 . To

code 3, we write 3083  . The binary representation of 3 using 3 bits is 011. So we output no

0’s, followed by a 1, followed by 011 to get 10113 . To transmit the sequence 21,3 we’d

output the bit stream 0011011011.

At the receiver we know that each symbol is represented by a sequence of 0’s (possibly empty)

terminated by a 1, followed by k bits. So we can break the bit stream 0011011011 up as follows.

00 1 101 1 011

0’s 1 3 bits 0’s 1 3 bits

(2) (=5) (0) (=3)

We then reconstruct the data values: 21528  , 3308  , and so on. For exponentially

distributed values and a proper choice of k, Rice Coding performs reasonably close to the

Entropy limit. It is easy to implement, does not require lots of statistical calculation, and does not

require a table of code words.

References

1. Pierce, J. R., An Introduction to Information Theory, Dover, 1980. ISBN 0-486-24061-4.

