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Channel Coding  

Introduction 

It is typically the case in digital communication systems that noise in the channel can cause 

errors in the received bit pattern. If the resulting bit error rate, or BER is unacceptable then we 

need a strategy to improve things. This leads to the idea of using error correcting codes. 

Information and Entropy 

Consider a random process or “source” called X that produces N possible signals. You can 

enumerate these symbols using N2log  bits. For example, if your source produces two symbols 

(e.g., BPSK) you need 1 bit, i.e., your two symbols is labeled 0 or 1. If your source produces four 

symbols (e.g., QPSK) you need 2 bits, i.e., your four symbols are labeled 00, 01, 10, or 11. If 

each symbol is equally likely then we say that there are N2log  bits of information per symbol. If 

the symbols are not equally likely then there are less than N2log  bits per symbol. As a trivial 

example, if you have four possible symbols, but two of them occur with probability zero, i.e., 

never, then you really only need one bit to represent the two symbols that actually occur. In 

general, if pk is the probability of occurrence for the kth symbol, then the average number of bits 

of information per symbol is given by )(XH , the entropy of X: 

 













N

k

kk

N

k k

k

pp

p
pXH

1

2

1

2

log

1
log)(

 (28.1) 

It is easy to verify that NXH 2log)(   for the equal probability case. 

An important special case is the binary source in which two symbols are possible. If one symbol 

occurs with probability p, then the other must occur with probability p1 . The binary entropy 

function is then 
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This is plotted in Fig. 28.1.  
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Figure 28.1: The binary entropy function. This gives the number of 

bits per symbol required, on average, to represent the output of a 

two-symbol source in which one symbol occurs with probability p 

and the other with probability p1 . The entropy takes on its 

maximum value of 1 bit per symbol when 5.0p  

Channel Capacity 

We’ve seen that for a binary channel we can ideally communicate one bit of information for 

every symbol transmitted, provided the two symbols (0 and 1) are equally free to occur. So we 

get one bit of information for one bit of transmission. Nothing surprising there. But now, suppose 

we are transmitting over a noisy channel. Noise, as we’ve seen, can cause bit errors. Let’s say the 

bit error rate is Pe. For example, as we saw for BPSK/QPSK, )/2( 0NEQP be  . Having bit 

errors presumably reduces the information carrying “capacity” of the channel, but by how much? 

For each bit received there is a question: Is this bit in error or is it correct? The first possibility 

occurs with probability Pe and the second with probability eP1 . Therefore the amount of 

information lost by not having an answer to this question is just the binary entropy function 

)(2 ePH . It follows that the channel capacity, in bits of information per bit transmitted, is 
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 (28.3)  

This is plotted in Fig. 28.2. When 5.0eP  the capacity falls to zero. This is the worst possible 

case and you cannot send any information over such a channel; each bit is completely 

randomized by noise. For lower bit error rates, however, the capacity is non-zero and it quickly 

approaches 1 as Pe decreases.  

What does it mean to say that the information carrying capacity of a channel is something less 

than one bit per bit? We will find out when we discuss error correcting codes below. 
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Figure 28.2: Channel capacity as a function of raw bit error rate. 

The solid curve is the exact result of (28.3). The dashed curve is 

the approximation.  

First, let’s take another look at the information carrying capacity of a channel. The following 

derivation is not rigorous, but you can think of it as a plausibility argument. Let W be the RF 

bandwidth of our channel and suppose our signal lasts for a time T. The Sampling Theorem tells 

us that this can be represented by WTn 2  samples. Suppose the average signal power is SP  and 

the average noise power is WNPN 0  where NkTN 0  is the noise spectral density. Our n 

samples define a vector in an n-dimensional space. “Typical” signal voltages would be 

SS PV   while “typical” noise voltages would be NN PV  . The noise would define an n-

dimensional “noise sphere” of uncertainty about the signal point. 
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Figure 28.3: Signal as a vector in an n-dimensional space. Noise 

creates a sphere of uncertainty about the signal vector.  
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All possible signal plus noise vectors would fall within an n-dimensional hyper-sphere with 

radius of about NS PPr  . Since the “volume” of an n-dimensional hyper-sphere is 

proportional or nr , the total volume available is proportional to 2/)( n

NS PP   while the volume 

occupied by a noise sphere is proportional to 
2/n

NP . Therefore the number of noise spheres that 

can fit in the available volume is  
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This is the maximum number of distinct signals, transmitted over a bandwidth W during a time T, 

that can be distinguished at the receiver. The number of bits of information is therefore 
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and the number of bits per second is 

  NSWC /1log2   (28.6) 

This form of the capacity is the maximum bit rate Rb at which the channel can carry information. 

Using the definition of spectral efficiency WRb / , and using bbS TEP / , bb TR /1 , and 

WNPN 0 , we can rearrange (28.6) to give 
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This gives the minimum 0/ NEb  that can support communication with spectral efficiency of   

bits per second per Hz. This is plotted in Fig. 28.4. Note that  goes to zero for 

dB6.1/ 0 NEb . But note also that for 1 , dB0/ 0 NEb .  
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Figure 28.4: Theoretical maximum spectral efficiency for a given 

0/ NEb . 

Error Correcting Codes 

Equation (28.3) tells us that we can never get a full bit of information for each transmitted bit. 

Instead, let’s say we try to code every block of k bits of information into a block of n transmitted 

bits where kn  . We refer to this as an ),( kn code and we say that our code has a rate nkR / . 

As a simple example we could repeat every bit of data three times in our transmission. To 

communicate the data [0 1 0] we’d transmitted [000 111 000] and so on. In this case 1k  and 

3n . We have a )1,3(  code and the rate is 3/1R , that is, there is on average 1/3 of a bit of 

information in each transmitted bit. To see the usefulness of this, suppose we use no coding. If 

we have a bit error in our original data stream and [0 1 0] gets corrupted to [0 1 1], there is no 

way to realize this at the receiver. On the other hand, with coding, if [000 111 000] gets 

corrupted to [000 111 100], we can tell that the last three bits are not the same, as they should be. 

So, we know that the last “1” is an error and we can correct it to get the original transmitted 

signal [000 111 000]. From that we know that the data stream was [0 1 0]. This is a simple 

example of an error correcting code. The idea is to put some redundancy into the signal so that 

the receiver can identify and correct bit errors.  

This is where (28.3) comes into play. In the late 1940’s a fellow named Claude Shannon proved 

that given some Pe there must exist a one code with rate R arbitrarily close to the channel 

capacity C that allows error-free communication. Unfortunately this theorem doesn’t find such a 

code it only proves existence. Since that time people have continued to come up with better and 

better codes that approach nearer to channel capacity C given in (28.3).  

A useful geometric interpretation of block codes is as follows. For an ),( kn  code, n bits of code 

are used to represent k bits of data. The n bits of code correspond to the n2  vertices of an n-
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dimensional binary “cube.” For 3n  we have a 3-dimensional cube as shown in Figure 28.5. 

The eight vertices represent all possible combinations of three bits: (0,0,0), (0,0,1), and so on. 

For the simple “repeat three times” code mentioned above, 1k . So, we are trying to 

communicate one bit of data, and there are 221   data states. We choose two of the eight 

vertices to represent these data states. In the example above we took the vertex (0,0,0) to 

represent data 0 and (1,1,1) to represent data 1. Now we can see where the error correcting 

capability comes from. A bit error moves us from a code vertex to an adjacent vertex. The code 

word (0,0,0) can change to (0,0,1), (0,1,0), or (1,0,0) while the code word (1,1,1) can change to 

(1,1,0), (1,0,1), or (0,1,1). As long as these two sets of adjacent vertices are distinct, we can 

correct a bit error.  

(1,1,1)

(0,0,0)

(1,0,0)

(0,1,0)

(1,1,0)

(0,0,1) (0,1,1)

(1,0,1)

 

Fig 28.5: Geometric interpretation of a (3,1) error correcting 

code. The set of vertices with Hamming distance 1 from code word 

(0,0,0) is distinct from the set of vertices with Hamming distance 1 

from code word (1,1,1). 

The number of bits by which two sequences differ is called the Hamming distance between the 

sequences. For example, the Hamming distance between (0,0,1) and (0,1,1) is 1. The idea of 

block coding is this. Of the n2  available vertices in an n-dimensional cube, choose k2  to 

represent the possible sequences of k data bits. If the minimum distance between any two of 

these vertices is d, then this code can correct 2/)1(  dm  bit errors. In our simple (3,1) code 

the Hamming distance is 3, so we can correct 1 bit error. 

Hamming Codes  

Probably the simplest useful error correcting codes are the Hamming codes. These can be 

constructed as follows. Chose some integer m. Then 12  mn  and mnk  . The code rate is  
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Form an nm  parity-check matrix H in which the columns are all the possible non-zero, m-

dimensional binary vectors. Arrange the columns so this has the form ][ QIH m  where Im is the 

m-dimensional identity matrix. Then the generator matrix is ][ k

T IQG  . The valid code words 

are the 2k possible linear combinations of the rows of G.  
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As an example, let’s take 3m . Then 7n  and 4k , that is we have a (7,4) code and the rate 

is 7/4R . The set of all possible non-zero, 3-dimensional binary vectors is 
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Then 
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and the generator matrix is 
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Let x be a linear combination of the row vectors of G (all arithmetic is done modulo 2) such that 

the last k bits are identical to our data bits. Then the syndrome of x, THxs   is zero. Let y be a 

corrupted version of x with a single bit error in the ith element. Then THys   will be the ith 

column of H. Therefore, if a single bit error occurs we can detect and correct it. 

For example, suppose we want to transmit the data vector  1001 . Adding the first and 

fourth rows of G (modulo 2) gives  1001100x . The last four bits are our data 

and the first three bits can be considered parity bits. You can verify that the syndrome of x is 0. 

Suppose in transmission this gets corrupted to  1101100y . Calculating the 

syndrome we find 
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This is the sixth column of H. Therefore we know that the sixth bit of y is in error (assuming 

only a single bit error has been made) and we can correct it to get x. We then extract the last four 

bits of x as our data. 

Let p be the probability that any given bit is in error (what we’ve called eP  above). The 

probability that a given bit is correct is )1( p . The probability that n bits are all correct is 
np)1(  . It follows that the probability that there are one or more bit errors in a sequence of n bits 

is np)1(1  . The probability that there is one, and only one, bit error is 1)1(  npnp . So the 

probability of two or more bit errors is the difference of these, or 



Channel Coding  28.8  

EE432: RF Engineering for Telecommunications  Scott Hudson, Washington State University 05/30/17 

 





  3
23

2
2

1

3

23

2
)1()1(1 p

nnn
p

nn
pnppP nn

err  (28.13) 

This is the probability our k data bits will not be perfectly communicated. In our example 7n  

so this probability is about 221p . If we had sent the k bits of data uncoded, the probability of 

them not being perfectly communicated would be 
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For 4k  this would be about p4 . If p is very small then pp 421 2   and we achieve much 

more reliable communication using the Hamming code.  

Note from (28.3) that for a code rate 4/7 error-free communication is theoretically possible for a 

bit error rate of about 088.0p . The (4,7) Hamming code does not achieve error-free 

communication for 088.0p . Rather it lowers the probability of error for k bits from about 0.35 

to about 0.16. This demonstrates how much more is theoretically possible. For this reason more 

complex block codes have been developed, most notably BCH and Reed-Solomon codes, that 

provide better performance. 
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