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PM & FM 

Introduction 

As we’ve discussed, amplitude modulation suffers from the problem that radio channels 

introduce their own amplitude modulation in the form of fading. You have seen in the labs that 

field amplitude can vary by 30 dB or more over a very short distance. So, amplitude is not a very 

good place to put information in a wireless channel, at least at higher frequencies. On the other 

hand, interference and fading does not affect radio frequency. Consequently putting information 

into the frequency, or phase, of an RF signal should be a more reliable way to communicate. 

Indeed, frequency modulation (FM), is the method of choice for quality analog radio 

communication. Because frequency is the derivative of phase, FM can be considered as a form of 

phase modulation (PM). PM is not of much use for analog communication but is important for 

digital radio systems. FM is useful for both analog and digital systems. 

Phase modulation 

As the name implies, in phase modulation we encode information by modulating the phase of the 

RF signal. The result is a signal of the form 

 )](cos[)( ttAts cc   (20.1) 

where the phase, relative to the RF carrier, is )()( tmkt p . Here )(tm  is the modulating signal 

and kp is the phase deviation constant. If )(tm  is in volts, then kp has units of radians per volt. 

Figure 20.1 shows an example of phase modulation. 

A drawback to phase modulation is that phase is a relative concept, i.e., we need a reference to 

define phase relative to. It can be difficult to establish a common reference between a transmitter 

and receiver, especially for continuous (analog) modulation. Imagine that you are shown a sine 

wave on an oscilloscope and someone asks you “What is the phase of that waveform?” You can’t 

answer unless you also have a reference sine wave and then determine the phase difference 

between the two. For example, in Fig. 20.1 the dotted waveform serves as a reference for the 

solid waveform. From the phase difference of these two you can determine the signal that 

produced the phase modulation. But you couldn’t determine that solely from the solid waveform 

alone. 

So, phase modulation is generally not very useful for analog modulation. Phase modulation is, 

however, very useful for digital modulation, and we will study that subject shortly. On the other 

hand, frequency, which is the derivative of phase, is an absolute quantity. You can look at a 

sinusoid on a scope and unambiguously determine its frequency without reference to any other 

signal. 
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Figure 20.1:Mathcad phase modulation example. The “RF” 

carrier frequency is 5000. The modulating signal consists of 

sinusoids at frequencies of 400 and 800. 

 

Frequency Modulation 

Instantaneous frequency is proportional to the time derivative of phase. That is, given a signal 

)(cos t , the instantaneous frequency is  
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d
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The instantaneous frequency of a phase-modulated signal of the form (20.1) is 

 
dt

d
ftf c




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2
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)(  (20.3) 

that is, the carrier frequency plus a term proportional to the time derivative of the phase 

modulation. The idea of frequency modulation is to make dtd / , instead of , proportional to 

the modulating signal. We set )(2/ tmkdtd f  so that  

 )()( tmkftf fc   (20.4) 
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where kf is the frequency deviation constant. If )(tm  is in volts, then kf has units of Hz per volt. 

For example, suppose kf is 1000 Hz per volt and fc is 100 MHz. Then to represent a signal of 2 

volts we’d have our transmitter send a frequency of 100.002 MHz (100 MHz plus 2 kHz), to 

represent a signal of –3 volts we transmit 99.997 MHz and so on. Frequency is an absolute 

concept; if you see a sine wave on an oscilloscope you can determine its frequency by counting 

the number of peaks that occur in a given interval. Therefore no reference is required. FM can 

easily be generated with a voltage controlled oscillator (VCO), a device that generates an 

oscillation whose frequencies varies with an applied control voltage. 

Since )(2/ tmkdtd f  we can write 

 

t

f dxxmkt
0

)(2)0()(  (20.5) 

Taking 0)0(  , (20.1) then gives us the RF signal  
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This looks pretty ugly due to the integral/derivative relationship between phase and frequency, 

but keep in mind that what’s really going on is the simple frequency shifting described in (20.4). 

An example of frequency modulation is shown in Fig. 20.2. 

Demodulating an received FM signal is, in principle, easy. A traditional approach is to use a 

circuit with a response that varies more-or-less linearly with frequency. For example, an ideal 

differentiator has a response  jH )( , so the amplitude of the response is proportional to 

frequency. This converts frequency into amplitude, i.e., FM into AM. Then an envelope detector 

can recover the original modulation. A more digital approach to FM reception is to use a counter 

that acts like a frequency meter and determines how many oscillations occur during a short time 

interval.  
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Figure 20.2: Mathcad frequency modulation example. The “RF” 

carrier and modulating signal are the same as in Fig. 20.1. 

Spectrum of an FM Signal 

For an arbitrary )(tm , expression (20.6) can get pretty messy. Let’s limit ourselves to a 

sinusoidal test tone tfatm mm  2cos)( . The phase is 
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 (20.7) 

So the RF signal is 

  )2sin(2cos)( tftfAts mcc   (20.8) 

where fmkaf   is the frequency deviation, and mff /  is the frequency modulation index. 

For example, if am is 0.1 volts, and kf  is 10 kHz per volt, then the frequency deviation is 1 kHz. 
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This means that the instantaneous frequency varies kHz1  about the carrier frequency. You get 

the same signal if you have an am of 1 volt and a kf  of 1 kHz per volt; it’s the product that is 

important. Physically this would mean you could drive a high-sensitivity (large kf ) VCO with a 

small signal, or drive a low-sensitivity VCO with a large signal and you would get the same 

result. In practice, therefore, it is f that is specified. For example, broadcast FM radio has a 

specified frequency deviation of 75 kHz.  

The frequency modulation index is dimensionless and is the ratio of the frequency deviation to 

the modulation frequency. As the sine factor in (20.8) varies between 1 , the phase varies over 

 . As we’ll see below  is important in determining the bandwidth of the RF signal. 

Even for the simple case of sinusoidal modulation, the FM signal (20.8) is not easy to analyze. 

However, it is a periodic signal in the sense that for ,3,2,1,0tfm  the phase term repeats. So, 

we should be able to represent it as a Fourier series. You can do this but the math is messy and 

requires some theory of Bessel functions. You find  
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where )(nJ  is the Bessel function of order n. The Bessel functions have the following power-

series representations 
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The first four of these is plotted vs.  in Fig. 20.3. 
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Figure 20.3: The first four Bessel functions ( 3,2,1,0n ) vs. the 

frequency modulation index. 

You can see from Fig. 20.3 that the nth Bessel function more-or-less “turns on” at about n . 

So, roughly speaking, we will get a significant contribution from the terms in (20.10) up to n  

for which the Fourier series terms have frequencies of mc nff  .  

Unlike the case of an AM signal, there is no finite spectral width into which all the signal power 

falls because the series (20.9) extends out to infinite frequency. However, due to the “turning on” 

property of the Bessel functions, nearly all the signal power will fall into a finite bandwidth. 

Carson’s rule approximates the bandwidth of an FM signal as 

 mfB )1(2   (20.11) 

If the modulating signal is more complex than a single sinusoid, mf  is taken as the maximum 

frequency. For example, phone quality audio typically includes frequencies up to about 4 kHz. 

So for this type of audio modulation we’d take )kHz4)(1(2 B . 

Note that ffm  , so we can write 

 mffB 22   (20.12) 

The bandwidth is about twice the frequency deviation plus twice the maximum frequency in the 

modulating signal. An example of the spectrum of an FM radio signal is shown in Fig. 20.4 
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Figure 20.4: Spectrum of a 462-MHz FM radio transmission with 

1kHz modulation. 

Note that unlike the case for AM where the modulation index  could not exceed 1, the 

frequency modulation index  can, in theory, be arbitrarily large. For AM, varying the 

modulation index did not change the RF bandwidth, but for FM it does. The larger  is the larger 

our RF bandwidth is. So why not make  very small? You might guess that it has to do with S/N. 

Recall that for AM, S/N is proportional to 2 . We’ll see that for FM, S/N is proportional to 2 . 

However, unlike the AM case, with FM we can have an arbitrarily large modulation index. 

Therefore, FM will allows us to trade off an increases bandwidth for an increasing S/N.  

Before we discuss S/N, however, let’s think about the effects of small-scale fading that we noted 

make AM impractical at higher frequencies. For FM we don’t care about the amplitude. The 

carrier amplitude cA  can fluctuate by orders of magnitude and it won’t change the 

phase/frequency of the signal. In fact, FM receivers typically employ a limiter that 

amplifies/compresses the signal so it has constant amplitude before performing demodulation. 

Fading can have an effect, however, on the S/N ratio and hence on the quality of the demodulated 

signal. 

Effect of Noise in PM and FM Systems 

In phase or frequency modulation, the signal is given by 

  )(cos)( ttAts cc   (12.13) 

where either  or its time derivative is proportional to the modulating signal )(tm . As we did for 

AM, we’ll represent the noise has having two components, one in phase with the carrier and one 

out of phase: 
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The two functions )(),( tntn sc  are assumed to be zero-mean, Gaussian RVs with variance 
2

n . 

The second form, which represents the noise in terms of random amplitude and phase 

modulation, is more convenient for us in the present case. You can show that )(trn  is Rayleigh 

distributed with 
22 2)( nn tr   while )(tn  is uniformly distributed between 0 and 2. If we 

draw the signal and noise on a phasor diagram, we get the following picture. 
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Figure 20.5: Signal and noise phasor diagram for PM/FM. 

The signal has amplitude of cA  and a phase of )(t . The noise phasor adds to that with 

amplitude of )(trn  and a phase relative to the signal of )()( ttn  . The phase of the resulting 

sum will differ from the signal phase by an amount )(te . Trigonometry gives us 
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if ncA   then almost always )(trA nc   and the second term in the denominator can be 

neglected. Also, the angle )(te  will be small so that 1tan  and our recovered phase signal 

is 
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Recall that for FM )(
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This is similar to (19.15) for the AM case, however, there is a derivative of the noise term here. 

Since derivation in the time domain corresponds to multiplication by j  in the frequency 

domain, we can see that the derivative will have an amplitude that increases with mf . We’ll end 

up with a factor of  /1/ fm kf . With the audio noise amplitude decreased by this factor, the 

noise power will be decreased by the square of it, and as a result the S/N of the recovered 

modulation should be proportional to 2 . More detailed analysis shows that  

 AMaudioFMaudio NSNS ,

2

, /3/   (12.18) 

where AMaudioNS ,/  is the audio S/N for an AM receiver with the same signal power and noise 

spectral density, and using 100% amplitude modulation. Since there is no theoretical limit on 

how large  can be, we can, in theory, increase S/N arbitrarily by increasing the bandwidth of the 

RF signal, mff 22  . For example, broadcast FM specifies kHz15mf  and kHz75f . So, 

5  and the audio S/N is 75 times (about 19 dB) what you’d get from an AM station at the 

same received power level. 

If the S/N is very low so that ncA  , then we could redraw Fig. 20.5, exchanging )(t  and 

)(tn  and exchanging cA  and )(trn , to get  

  )()(sin
)(

)()( tt
tr

A
tt n

n

c
nr   (12.19) 

The only place the signal )(t  appears is inside the sine function where it is added to the 

uniformly distributed random phase )(tn . The result is that the signal as effectively 

disappeared. As in the AM case, we see that FM exhibits a threshold effect. For this reason the 

S/N gains implied by (12.18) have a limit. If the RF S/N is too low to begin with (much below 

about 10 dB, say) then you end up in the “below threshold” situation and you have no signal no 

matter what the value of . 
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