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Queuing (Trunking) Theory 

Introduction 

Queuing theory is the theory of waiting in line. It answers questions such as: If N customers are 

trying to randomly access a system that can serve M at a time, what is the probability that 

someone will be denied service? The theory has wide applications, from determining the number 

of check-out counters at a supermarket, to providing guidelines for the required capacity of a 

power system, to telling an ISP how many dial-up modems to have. It’s important for us because 

it tells us how many customers we can serve with a given number of phone channels. 

Theory 

Erlang studied the problem of telephone system congestion and published his analysis in 1917. 

He assumed that the probability of a call being initiated during a short time interval dt is dt 

where  is some constant. In other words he assumed that calls are initiated randomly at a 

uniform (on average) rate. The parameter  is the average number of calls per unit time made by 

all users. If there are U users in the system and each user makes  calls per unit time then 

1 U . 

Erlang also assumed that the probability that any particular call would terminate during a short 

time interval dt is dt where  is some other constant. You can show that this means that the 

probability for a phone call have a duration between t and dtt   is given by dte t . You can 

also show that the probability that the elapsed time between phone calls is be between t and 

dtt   is given by dte t . (See Appendix.) These assumptions are generally verified by observed 

telephone usage statistics. 

With these assumptions, the average duration of a phone call is 

 Hdtett t 

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0

 (15.1) 

H is called the holding time.  

Say we have a system with C phone channels. Assume that )(tpk  is the probability that k of 

these channels are occupied at time t, for Ck 0 . Let’s consider the question: What is the 

probability that there are n calls in the system at time dtt  ? We will denote this by )( dttpn  . 

Since dt is a very short time interval we will consider that at most a single event can occur during 

dt. Then there are three ways to arrive at having n calls. The first is that there were already n 

calls and no calls were initiated or terminated. The probability of a call being initiated is dt. The 

probability of a particular call being terminated is dt, so the probability of any one of n calls 

being terminated is ndt (provided dt is very small). Therefore, the probability of neither 

happening is dtn )(1  . This scenario therefore has a probability of ])(1)[( dtntpn  . 
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The second possibility is that there were 1n  calls at time t and a new one was initiated. This 

has a probability of dttpn  )(1 . The third is that there were 1n  calls at time t and one was 

terminated. This has a probability of dtntpn  )1)((1 . Summing these up we arrive at 

 dtntpdttpdtntpdttp nnnn   )1)(()(])(1)[()( 11  (15.2) 

Now consider a steady-state solution where the probabilities don’t change with time, i.e., 

nn ptp )( . This requires, for Cn 0 , 

 dtnpdtpdtnpp nnnn   )1(])(1[ 11  (15.3) 

or 

 11)1(   nnnn pnpppn  (15.4) 

where  / . For the cases 0n  and Cn   the equations are, respectively 
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because in the first case we cannot have –1 calls, and in the second we cannot have 1C  calls. 

A solution to (15.4) and (15.5) is 
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(plug it in and verify this). However, since there is a 100% probability that some number of 

channels between 0 and C will be occupied we must have 
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This requires us to normalize our solution as follows: 
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Now, the probability that a user will experience a blocked call is the same as the probability that 

all C channels are occupied, or 
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where PB is the probability of blocking, and  is called the offered traffic intensity and has units 

of Erlangs.  

Evaluating this equation is problematic for large values of C because you have the problem of 

dividing huge numbers. A more useful form for calculation is 
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Each term can be obtained from the previous via multiplication by the ratio of two reasonably 

sized numbers and so we avoid the problem mentioned above. The following Matlab subroutine 

implements this. 

function p = PB(C,rho) 

sum = 1; 

x = 1; 

for i=C:-1:1 

   x = x*(i/rho); 

   sum = sum+x; 

end 

p = 1/sum; 

 

For example, with 40 channels and a traffic intensity of 35 Erlangs, we find a PB of 5.4%. 

Typically we want to invert this equation to find  when given values of C and PB. The 

following Matlab code is a simple implementation of this. 

function rho = erlangs(C,pb) 

rho = C; %rho will generally be less than C, so we’ll work downward. 

%but just in case we need rho>C, we check for that first. 

while (PB(C,rho)<=pb) 

    rho = rho+1; 

end 

%now find integer part that gives PB just higher than desired 

while PB(C,rho)>pb 

   rho = rho-1; 

end 

rho = rho+1; 

%find first decimal place that gives PB just higher than desired 

while PB(C,rho)>pb 

   rho = rho-0.1; 

end 

rho = rho+0.1; 

%find first second place that gives PB just lower than desired 

while PB(C,rho)>pb 

   rho = rho-0.01; 

end 
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As an example, say we have 40 channels and we want a PB of 2%. Then we find that we can 

support an offered traffic intensity of 31 Erlangs. Since 2% of the offered traffic is blocked, we 

end up with a carried traffic intensity that is 98% of this value. 

What I’m calling “probability of blocking” is often called “grade of service” or GOS. So a 

system might be said to offer a “2% grade of service.” Personally I find this terminology a bit 

confusing. From the sound of it you might expect that you’d want the highest possible “grade of 

service.” After all, who wants a low grade of anything – imagine if your phone company started 

charging you more because they “are now offering you a lower grade of service?” But a higher 

GOS means that it will be harder to place calls. Maybe “irritation of service” would be more 

appropriate. In this course we will use “probability of blocking” as it is more to the point. 

Simulation 

You can easily simulate a trunked-channel system. Step through time at intervals of dt. At each 

step look at a random number x uniformly distributed over [0,1]. If dtx   then assume a new 

call is attempted. If all channels are full then the new call is blocked. Otherwise we occupy an 

empty channel. Then for each call in progress look at a new random number x. If dtx   “hang 

up” the call and clear the channel. Continuing on in this manner we can keep track of the number 

of channels occupied as a function of time and the fraction of attempted calls that are blocked. 

The following Matlab code implements this. 

%trunksim.m performs a trunked channel simulation 

 

C = 10; %number of trunked channels 

H = 3; %average call duration in minutes 

lambda = 2; %average number of calls per minute 

tfin = 100; %number of minutes to simulate 

dt = 1; %time step in seconds 

 

tfin = tfin*60; %convert to seconds 

Nattempt = 0; 

Nblocked = 0; 

lambda = lambda/60; %convert to calls per second 

H = H*60; %convert to seconds 

mu = 1/H; 

M = 0; %M will be the # of channels currently in use 

t = 0; 

k = 1; 

 

while (t<tfin)   

   % begin by seeing if some wants to make a call 

   x = rand(1); %"flip a continuous coin" 

   if (x<lambda*dt) %condition for call attempted 

      Nattempt = Nattempt+1; %keep track of # of calls 

      if (M==C) %call blocked, all channels are full 

         Nblocked = Nblocked+1; %keep track of number of blocks 

      else %otherwise we use up a new channel 

         M = M+1; 

      end 

   end 
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   % now see how many of the current users want to hang up 

 hangups = 0; 

   x = rand(1,M); %flip M coins 

   for i=1:M 

  if (x(i)<mu*dt) %condition for call terminated 

       hangups = hangups+1; 

     end 

   end 

   M = M-hangups; %free up channels where user hung up 

   t = t+dt; 

   occupied(k) = M; %keep track of traffic vs. time 

   k = k+1; 

end 

plot(occupied); 

Nattempt 

Nblocked 

GOS = 100*(Nblocked/Nattempt) 

axis([0 6000 0 10]); 

 

Simulation results are shown in Fig. 15.1. We see that the number of channels occupied 

fluctuates considerably.  

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

9

10

 

Figure 15.1: Simulation results. Number of occupied channels 

(vertical axis) vs. seconds of time (horizontal axis). A blocked call 

results when all 10 channels are occupied and someone tries to 

make a new call. In this simulation 02.0PB . 
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Using the PB Equation in Cellular Design 

Note that 

 HU1



  (15.11) 

The dimensionless product H1  is the fraction of the time that an individual user wants to be on 

the phone. For example, if the average person wants to make 2 calls per hour and each lasts on 

average 5 minutes, then 6/11  H  meaning that the typical user wants to spend 1/6 of her time 

on the phone. If 600U  users then 100 Erlangs of offered traffic. If 02.0PB  then the 

system will support 98 Erlangs of carried traffic. 

This means that 600 people who want to use their phones 1/6 of the time produce the same 

carried traffic as 10 people who use their phones all of the time. Thus the Erlangs of carried 

traffic intensity can be considered as the equivalent number of full-time phone users or full-time 

phone calls. 

Erlangs (of carried traffic) are what a service provider makes money on, not the number of 

physical channels they have. For example, if a cell site supports 50 Erlangs of carried traffic, and 

the billing rate for calls is $0.10/min, then the cell site generates revenue at the rate $5/minute, 

that is 

 Revenue rate = (Erlangs of carried traffic) x (billing rate) 

If you want to make more money you have to either increase your billing rate (your price per 

Erlang) or increase your traffic intensity (your number of Erlangs). Increasing your billing rate 

will probably drive your customers to another company. So, increasing your traffic intensity is 

more promising. How do you increase your traffic intensity ? You need to increase at least one 

of the three factors in (15.11). One approach is the increase the number of users U. Another is to 

encourage users to use their phones more often, i.e., to increase 1 , and/or to talk longer, i.e, 

increase H. However as you increase , for a fixed number of channels C, the PB increases. As it 

does more and more users will get busy signals and become irritated with your service. If a 

competitor offers a lower PB they are likely to switch service providers. Consequently to obtain 

an increase in traffic intensity typically requires some engineering improvements to avoid an 

increase in PB. 

Using the PB concept in cellular design usually goes as follows: 

1. Determine the number of physical channels available per cell. 

2. Find the offered traffic intensity per cell that gives an acceptable PB. 
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3. For estimated phone utilization H1 , translate this into the number of customers you can 

serve per cell. 

4. For a given user density this determines the desired cell size. 

Here’s an example.  

 

Example 15.1 

1. We have 200 total channels available in an 4N  reuse pattern. Therefore we 

have 50 channels per cell available.  

2. We want to offer service with %2PB . Calculating the traffic intensity 

possible for 50 channels with %2PB  we find that we can support 40 

Erlangs of offered traffic. 

3. Let’s assume phone utilization is 01.01  H , i.e., customers spend 1% of 

their time on the phone. Then U01.040   gives 4000U  users per cell. 

4. Assume that there is one customer per 2m1000 . This is a density of 
2km1000   Then our cell can serve 2km41000/4000  . Since the area of a 

cell is 26.2 R  this gives km24.1R  for our cell radius. 

 

Trunking Efficiency 

Trunking efficiency is a measure of channel utilization at a given PB. An efficiency of 100% 

would mean that every channel is always in use, an efficiency of 50% that channels are used ½ 

the time, on average, and so on. The efficiency is simply the number of carried Erlangs per 

channel, or CPB /)1(  . In Fig. 15.1 this is plotted for %2PB . 
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Figure 14.1.Trunking efficiency vs. number of channels for 

PB=2%. 

Trunking efficiency increases with the number of channels. It drops off dramatically when C gets 

small. We need to have a few channels unused to allow new calls to be made. When C is large 

these few “buffer” channels are a small fraction of the total, but when C is small they are a large 

fraction. Hence efficiency increases with C. 

Consider the simulation results in Fig. 15.1 where 10C . The trunking efficiency is the fraction 

of the graph’s area that falls under the usage curve. Fig. 15.2 shows that for 10 channels the 

efficiency should be about 50%.  We can see that indeed about ½ the area of the Fig. 15.1 graph 

falls under the usage curve. 
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Appendix 

Assume your have made a phone call. You have an N-sided die. On one side of the die is written 

“hang up” while on the 1N  other sides is written, “stay on the line.” The probability that “hang 

up” will come up is N/1 . Otherwise you stay on the line. After t  seconds you roll the die 

again. If “hang up” comes up then you hang up. If not then you stay on for another t  seconds, 

and so on. What is the probability that you will stay on the line tn  seconds and hang up by 

tn  )1(  seconds?  
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Define  so that Nt /1 . Then the probability that you will hang up at any particular roll of 

the die is t  while the probability that you will stay on the line is t1 . For your call to last 

tn  seconds you need to roll “stay on the line” for n rolls and then roll “hang up.” The 

probability of this occurring is tt n  )1(  and this is the probability that your phone call will 

last tnt   seconds but terminate by tnt  )1(  seconds. If t  is very small then 

te t  1  and we can write tetett ttnn  )1( . With dtt   we arrive 

at the probability that your phone call will last t seconds but terminate by dtt   seconds: 

dte t .  
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For a given number of channels (C) this table gives the offered traffic intensity (rho) that results 

in a PB of 2%. 

 

  C    rho     C    rho     C    rho     C    rho     C    rho 

  5   1.65     6   2.27     7   2.93     8   3.62     9   4.34    

 10   5.08    11   5.84    12   6.61    13   7.40    14   8.20    

 15   9.00    16   9.82    17  10.65    18  11.49    19  12.33    

 20  13.18    21  14.03    22  14.89    23  15.76    24  16.63    

 25  17.50    26  18.38    27  19.26    28  20.15    29  21.03    

 30  21.93    31  22.82    32  23.72    33  24.62    34  25.52    

 35  26.43    36  27.34    37  28.25    38  29.16    39  30.08    

 40  30.99    41  31.91    42  32.83    43  33.75    44  34.68    

 45  35.60    46  36.53    47  37.46    48  38.39    49  39.32    

 50  40.25    51  41.18    52  42.12    53  43.05    54  43.99    

 55  44.93    56  45.87    57  46.81    58  47.75    59  48.70    

 60  49.64    61  50.58    62  51.53    63  52.48    64  53.42    

 65  54.37    66  55.32    67  56.27    68  57.22    69  58.17    

 70  59.12    71  60.08    72  61.03    73  61.98    74  62.94    

 75  63.90    76  64.85    77  65.81    78  66.77    79  67.72    

 80  68.68    81  69.64    82  70.60    83  71.56    84  72.52    

 85  73.49    86  74.45    87  75.41    88  76.37    89  77.34    

 90  78.30    91  79.27    92  80.23    93  81.20    94  82.16    

 95  83.13    96  84.10    97  85.06    98  86.03    99  87.00    

100  87.97   101  88.94   102  89.91   103  90.87   104  91.85    

105  92.82   106  93.79   107  94.76   108  95.73   109  96.70    

 

 

For a given number of channels (C) this table gives the offered traffic intensity (rho) that results 

in a PB of 5%. 

  C    rho     C    rho     C    rho     C    rho     C    rho 

  5   2.21     6   2.96     7   3.73     8   4.54     9   5.37    

 10   6.21    11   7.07    12   7.95    13   8.83    14   9.72    

 15  10.63    16  11.54    17  12.46    18  13.38    19  14.31    

 20  15.24    21  16.18    22  17.13    23  18.07    24  19.03    

 25  19.98    26  20.94    27  21.90    28  22.86    29  23.83    

 30  24.80    31  25.77    32  26.74    33  27.72    34  28.69    

 35  29.67    36  30.65    37  31.63    38  32.62    39  33.60    

 40  34.59    41  35.58    42  36.57    43  37.56    44  38.55    

 45  39.55    46  40.54    47  41.54    48  42.53    49  43.53    

 50  44.53    51  45.53    52  46.53    53  47.53    54  48.53    

 55  49.53    56  50.54    57  51.54    58  52.55    59  53.55    

 60  54.56    61  55.57    62  56.58    63  57.58    64  58.59    

 65  59.60    66  60.61    67  61.63    68  62.64    69  63.65    

 70  64.66    71  65.67    72  66.69    73  67.70    74  68.72    

 75  69.73    76  70.75    77  71.76    78  72.78    79  73.80    

 80  74.81    81  75.83    82  76.85    83  77.87    84  78.89    

 85  79.91    86  80.93    87  81.95    88  82.97    89  83.99    

 90  85.01    91  86.03    92  87.05    93  88.07    94  89.10    

 95  90.12    96  91.14    97  92.16    98  93.19    99  94.21    

100  95.24   101  96.26   102  97.28   103  98.31   104  99.33    

105 100.36   106 101.38   107 102.41   108 103.44   109 104.46    

 


