
Lecture 10
Diffraction

1 Introduction
It is quite often the case that no line-of-sight path exists between a cell phone and a basestation.
In other words there are no basestations that the customer can see as they are all behind obstacles
such as hills or buildings. Yet communication is typically still possible. How does a field make it
from transmitter  to  receiver  when  there  is  no  line-of-sight  path?  Usually the  reason  is  the
phenomenon of diffraction whereby a field can “bend” around obstacles. 

Unlike reflection and path loss,  that can be understood in geometrical terms, diffraction is  a
purely  wave  phenomenon.  It  is  a  strong  function  of  wavelength.  Long-wavelength  (low-
frequency)  fields  more  readily “bend”  than  short-wavelength  (high-frequency)  fields.  As  the
wavelength gets really small (e.g., light) diffraction becomes negligible and communication is
typically possible only via line-of-sight paths. 

Even  “simple”  diffraction  problems  are  mathematically  messy.  We  are  going  to  analyze  a
“canonical”  diffraction  problem –  knife  edge  diffraction –  and  use  our  findings  to  develop
practical models that can be applied in more realistic scenarios.

The  knife-edge  diffraction  problem  consists  of  a  plane  wave  interacting  with  a  perfectly
conducting infinite half plane (a “screen”). This is illustrated below.
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Fig.  1 Geometry  of  half-plane  diffraction.
Field  is  incident  from  the  lower  left.  The
conducting half-plane extends down the page
infinitely  far.  The  arrows  represent  the
Poynting vector of the corresponding fields.

The plane wave is incident from the lower left of the figure. From a geometrical point of view
where it hits the screen it is reflected, and where it misses the screen it continues on in a straight
line. This results in space being divided into three regions: a region where both incident and
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reflected waves exist, a region where only the incident wave exists, and a shadow region where
no wave exists. Because the field is  a wave phenomenon, however, things are not quite this
“clean.” Most importantly,  some of the field “leaks” into the shadow region. This difference
between the real phenomenon and the straight-line geometry of  Fig. 1 is what we refer to as
diffraction. It is a very important phenomenon because if it did not exist it would be possible to
receive a signal only when a direct line-of-sight path existed between transmitter and receiver. In
a cellular phone system, especially in an urban environment, it is very often the case that users
are  in  shadow  regions  where  no  line-of-sight  path  exists.  In  this  case  diffracted  fields  are
typically the means by which communication takes place.

2 Simulation
Maxwell’s equations can be solved numerically using a technique known as the finite-difference
time-domain  (FDTD)  method.  The  following  figure  shows  FDTD calculations  of  half-plane
diffraction for four different wavelengths.

Fig.  2 Numerical calculations of diffraction by a half-plane for four
different wavelengths. The plane wave is incident from the left.

In this case the field is incident directly from the left and the shadow region should be the region
to the right of the screen. However, we can see that some of the field “leaks” into the shadow
region. There is more leakage for the longer wavelengths than for the shorter wavelengths.
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3 Theory
The  idealized  knife-edge  diffraction  problem  is  illustrated  below.  The  theory  is  a  bit
mathematical and we will only give an overview of the development. (Refer to a course in optics
or an optics text for more details.)
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Fig.  3 Idealized  knife-edge  diffraction  problem.  The  perfectly-
conducting screen extends infinitely far down the page.

The  transmitter  (TX)  will  be  the  origin  of  our  coordinate  system  and  the  line  joining  the
transmitter and receiver (RX) will serve as our z axis. The screen is a distance r 1  from the TX, a
distance r 2  from the RX, and it extends a height h above the z axis. If h is positive, RX is in the
“shadow region” while if h is negative it is in the “incident region.” The TX transmits a spherical
wave described by

ET=
e
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λ √x2+ y2+ z2

− jλ √ x2+ y2+ z2
≈
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λ z
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The approximation used to get the last expression is that √ x2+ y2+z2≈ z+( x2+ y2)/(2 z )  which
is valid when  z2≫ x2+ y2 . At  z=r1  the field is zero for  x<h  due to the screen. We will
assume that for x>h  the field is simply the spherical wave (1). In other words the screen simply
“cuts off” a part of the spherical wave. This is not exactly true – there are some edge effects – but
it’s a good approximation. Now we need to figure out how this truncated field propagates out to
the RX. 

Electromagnetic theory tells us that each point on the wavefront at z=r1  can be considered as
the source of a new spherical wave with amplitude given by the field amplitude at that point.
(This concept is called  Huygen’s principle.) We then simply sum the contributions of all those
spherical waves at the RX to get the received field. The result is given by the following equation:
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Looking at the first line, the expression in the brackets is just the transmitted spherical wave at
z=r1 . This then acts as the amplitude of a new spherical wave that then propagates a distance

√ x2+ y2+r 2
2≈z+( x2+ y2)/(2 r2)  to  the  RX.  That  spherical  wave  accounts  for  the  rest  of
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integrand. We then sum up – integrate – all these contributions. The field is zero for x<h , so
our integral over x is from h to infinity. In the second line we rearrange things to put it in a more
convenient form.

The y integral can be done in closed form to get
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With the change of variable t=x √ 2
λ ( 1
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where
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λ (r 1+r 2
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) (5)

is called the diffraction parameter. Now the received field can be written
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with r=r 1+r 2 . In the absence of the screen the received field would simply be the transmitted

field e
− j 2π

λ
r
/(− jλ r) . With the screen present we have
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We define the diffraction gain as the power ratio of the screen present to the screen absent cases.
This is
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It is usually convenient to write
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where
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C (u )=∫
0
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S (u)=∫
0
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(10)

are called the Fresnel integrals and are plotted below. 

Fig. 4 Numerical calculation of the Fresnel integrals.

We then have

Gd (u)= 1
2 [(1

2
−C (u))

2

+(1
2
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2] (11)

We see that the diffraction gain is a function of the diffraction parameter u alone. For large values
of u the Fresnel integrals behave as
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1
2
+

1
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(12)

These expressions are accurate to better than 2% for  u>2 . An approximation good to better
than 1.5 dB is

Gd ,dB={
0 u≤−1

−13
2
(u+1) −1<u<1

20 log
1

√2πu
u≥1

(13)
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Fig. 5 Comparison of  exact and approximate diffraction gain expressions.

Note that in Fig. 3, the angles θ  and ϕ  are given by tanθ=h/r 1 , tan ϕ=h/r 2 . If we call the
distance between TX and RX  r=r 1+r 2 , then we can write the diffraction parameter as

u=h√ 2
λ ( r1+r2

r1 r2
)

=±√ 2 r
λ

h
r 1

h
r2

=±√ 2 r
λ

tanθ tanϕ

(14)

We use the "+" if h ,θ≥0  and "-" otherwise.
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See section 8.7 “Fresnel Diffraction at a Straight Edge.”
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