
Lecture 8
Small Scale Fading

1 Introduction
In a  previous  lesson we considered the multipath phenomenon.  We saw that  in  a  nontrivial
environment we should expect there to be several reflected field components in addition to the
direct-path component we’d get in free space. These reflected waves will typically be traveling in
different directions, so our received field will look like the sum of a number of randomly oriented
plane waves. The result is that at any point in space the field amplitude will be a random phasor
sum. In this lesson we want to consider the resulting field amplitude probability distribution.

Field amplitude is related to receiver voltage by the antenna factor (AF). This is defined as

AF=
|E|
|V | (1)

where  |E|  is the magnitude of the electric field at the receiving antenna (units of volts-per-
meter) and |V |  is the magnitude of the voltage in the receiver (units of volts). The AF therefore
has units of m−1  and is related to antenna gain as follows. The intensity of a field is |E|2/(2η0)

with  η0=377Ω  the impedance of free space. Received power is  |V |2/ (2 Z 0)  with Z0=50Ω
the receiver impedance. Received power is also field intensity times antenna area. Effective area
is related to gain by A=G λ2/(4π) . Therefore

|V |2

2 Z 0

=
|E|
2η0

Gλ 2

4π
(2)

from which

AF=
|E|
|V |

=
√4πη0/Z 0

λ √G
=

9.73
λ√G

(3)

We see that AF is simply another way to represent antenna gain. Its usefulness is that it allows us
to directly convert receiver voltage into field amplitude. 

2 Rayleigh Fading
Rayleigh fading is the limit of the interference of an infinitely large number of randomly oriented
field components. Before we delve into the theory let’s look at simulation and experiment to see
what we’re talking about. Our simulation will generate a relatively large number of plane waves
with  random directions  of  propagation  and  relative  phases.  The  following figure  shows  the
Mathcad code to generate the simulation. We’ll discuss the theoretical “Rayleigh” distribution
below.
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2.1 Simulation
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Fig. 1 Mathcad simulation of Rayleigh fading.

The next figure shows the resulting simulated field amplitude as a function of spatial location
and  a  histogram of  the  field  amplitude  values.  We  can  see  that  the  field  amplitude  varies
considerably over a square that is only one wavelength on a side. For example, at 1900 MHz one
wavelength is only about 16 cm – about the size of a soccer ball. 

Fig. 2 Results of above simulation. The contour plot of field distribution is one wavelength on a side. The
numerical amplitude distribution is simply a histogram of the field distribution. The “theory” curve is a
Rayleigh distribution.
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The amplitude distribution has the appearance of a skewed Bell Curve. As we’ll see below, this is
called a “Rayleigh Distribution.” 

2.2 Experiment

The following figure displays the results measuring AMPS control channel field strengths over 8-
inch square grids and producing contour plots and histograms from these measurements. The
contour plots are reminiscent of that in Fig. 8.2. The field amplitude histograms are not precisely
Rayleigh distributed but qualitatively similar.

Fig. 3 Field strength measurements in EME206 of A and B block AMPS control 
channels. Measurements were made over 8 by 8 inch grids corresponding to 
approximately 0.6 wavelengths.

3 Theory
Our  model  for  Rayleigh  fading  is  an  infinite  number  of  randomly  oriented  plane  waves
interfering. If we plop down at some arbitrary point in space, each of these plane waves will have
some random phase. For simplicity let’s assume each plane wave has the same amplitude α . (A
more involved derivation with random amplitudes leads to the same result we’ll get here.)  Then
for either the field amplitude or the receiver voltage, we have a random phasor sum of the form

a e jθ=∑
k=1

N

α e jϕk (4)

Call the real and imaginary parts of this r and i we have 
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r=α∑
k=1

N

cosϕk

i=α∑
k=1

N

sinϕk

(5)

By the Central Limit Theorem, both r and i should tend to Gaussian random variables for large N.
Since the average value of both sin and cos are zero, the mean values of  r and i are zero. The
variance of r can be calculated as (angled brackets denote mean value)

σ 2=α2〈∑
k=1

N

cosϕk ∑
m=1

N

cosϕm〉
=α2∑

k=1

N

cos2ϕk

=
N
2
α2

(6)

because 〈cos ϕk cosϕm 〉=0  when k≠m . The variance of i is the same. Also 〈 r i 〉=0  because
〈cosϕk sin ϕm 〉=0  for any k and m. A theorem from statistics tells us that under these conditions
r and i are independent Gaussian random variables. Their joint probability distribution is

pri(r ,i)= 1
σ √2π

e
− 1

2
( r
σ )

2

1
σ √2π

e
−1

2
( i
σ )

2

= 1

2πσ2
e
−

1
2

r2+i 2

σ 2

(7)

If r and i are the real and imaginary parts of the received voltage phasor we can write r=V cosθ
and i=V sinθ  with V the voltage amplitude. We can use this change of variables to write

1

2πσ 2
e
−

1
2

r2+i2

σ 2

dr di= V

σ2
e
− V 2

2σ2

dV (8)

where we've used  dr di=V dV d θ . This gives us the probability distribution for the received
voltage:

pV (V )= V

σ2
e
− V 2

2σ 2

(9)

We call this the Rayleigh distribution. It gives the probability of obtaining a given voltage in a
receiver in an environment consisting of a large number of randomly oriented field components.
The expected value of V is σ √π/ 2 .

If we are interested in received power we can use  P∝V 2=r2+i 2  to get  P0=〈 P 〉∝2σ2  and
dP∝2V dV . Therefore

V

σ2
e
− V 2

2σ2

dV= 1
P0

e
− P

P0 dP (10)

and the probability distribution for power is
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pP (P )= 1
P0

e
− P

P 0 dP (11)

The expected value of P is P0 . However, notice that the most likely received power is zero!

Sometimes you need to generate random numbers with a Rayleigh distribution. One way to do
this is to take a random variable x that is uniformly distributed over [0,1]  and pass it through the

function y=σ √2 ln
1
x

. The result is that y will be Rayleigh distributed. 

4 Other Types of Fading
Rayleigh fading is  the limiting case of a large number of interfering plane waves. The other
extreme would be the case where the field is a single plane wave, such as would occur in free
space propagation. (The real field would be more like a spherical wave, but over a small region
of space far from the transmitter it would look essential like a plane wave.) In this case there
would be no fading and the received signal would be perfectly constant. 

In between these extremes is the case where the field consists of a single strong plane wave with

many weaker random waves. We could treat this case by using r=r 0+α∑
k=1

N

cosϕk  in (5) where

r 0  is the amplitude of the single strong wave. The result is referred to as Ricean fading. 

Since Rayleigh fading represents the worst case fading scenario, it is the model most often used
when designing wireless systems. If a system will work under Rayleigh fading then it will almost
certainly work under  less  severe conditions.  For  this  reason we will  only consider  Rayleigh
fading in this course.
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