Lecture 6

Link Budgets

1 Introduction

One of the most important uses of propagation models is to develop link budgets. A financial budget typically involves looking at your income, looking at your required expenditures, and making sure income is at least as large as expenditures. A link budget is a similar process in an RF system involving power instead of money.

2 Probability Received Signal Exceeds Some Value

One characterization of a radio receiver is its sensitivity. This is the smallest received signal that it can properly operate with. For example, suppose a certain cellular phone must receive at least $P_{\text {min }}=-100 \mathrm{dBm}$ in order to function properly. Say received signal strength is modeled by

$$
\begin{equation*}
P_{R}=P_{0}-10 n \log \frac{r}{r_{0}}+X \tag{1}
\end{equation*}
$$

and the phone is some distance r from the base station. An important question is: What is the probability that P_{R} will be at least $P_{\text {min }}$? This is the probability that the phone will function properly. P_{R} is a Gaussian random variable with mean $P_{R 0}=P_{0}-10 n \log \frac{r}{r_{0}}$ and variance σ^{2}. The probability distribution function for P_{R} will look like that shown in XXXX, and the desired probability is the area under the curve from $P_{\text {min }}$ to infinity.

Fig. 1 Probability that P_{R} is at least $P_{\text {min }}$ is the area of the shaded portion of the bell curve.

Mathematically this is

$$
\begin{equation*}
\operatorname{Pr}\left[P_{R} \geq P_{\min }\right]=\frac{1}{\sigma \sqrt{2 \pi}} \int_{P_{\text {min }}}^{\infty} e^{-\frac{1}{2}\left(\frac{x-P_{R 0}}{\sigma}\right)^{2}} d x \tag{2}
\end{equation*}
$$

With a change of variable $y=\left(x-P_{R 0}\right) / \sigma$ this becomes

$$
\begin{align*}
\operatorname{Pr}\left[P_{R} \geq P_{\min }\right] & =\frac{1}{\sqrt{2 \pi}} \int_{\frac{P_{\min }-P_{R 0}}{\sigma}}^{\infty} e^{-\frac{1}{2} y^{2}} d y \tag{3}\\
& =Q\left(\frac{P_{\min }-P_{R 0}}{\sigma}\right)
\end{align*}
$$

where the Q function is defined as

$$
\begin{equation*}
Q(z)=\frac{1}{\sqrt{2 \pi}} \int_{z}^{\infty} e^{-\frac{1}{2} y^{2}} d y \tag{4}
\end{equation*}
$$

The error function $\operatorname{erf}(z)$ is related to the Q function by

$$
\begin{equation*}
Q(z)=\frac{1}{2}\left[1-\operatorname{erf}\left(\frac{z}{\sqrt{2}}\right)\right] \tag{5}
\end{equation*}
$$

Scilab and Matlab have built-in versions of erf. When $z \geq 0$ the following approximation for Q

$$
\begin{equation*}
Q(z)=\frac{1}{0.661 z+0.339 \sqrt{z^{2}+5.51}} \frac{e^{-\frac{1}{2} z^{2}}}{\sqrt{2 \pi}} \tag{6}
\end{equation*}
$$

is good to better than 0.3%. For $z<0$ we can use $Q(z)=1-Q(-z)$.
Example 1: For the typical car, a certain FM radio station currently produces a signal $P_{R}=-40-35 \log (r / 1 \mathrm{~km})+X$ with $\sigma=8 \mathrm{~dB}$. What is the probability of at least $P_{\text {min }}=-100 \mathrm{dBm}$ at a distance of 100 km ?

$$
\begin{aligned}
& \text { At } \quad 100 \quad \mathrm{~km}, \quad P_{R 0}=-40-35 \log (100)=-110 \mathrm{dBm} . \quad \text { Since } \\
& Q\left(\frac{-100-(-110)}{8}\right)=0.106 \text { the probability is about } 10.6 \%
\end{aligned}
$$

Often we want to go the other way with such a calculation, inverting the Q function to find out the transmitted power level required for good reception.

Example 2: For the situation the previous example, how much would we have to increase the transmitted power to achieve 90% probability of good reception? We need to find z such that $Q(z)=0.9$. Here is how we can do that in Scilab -->deff('y=Q(z)', 'y=0.5*(1-erf(z/sqrt(2)))');
-->deff('y=f(z)','y=Q(z)-0.9');
-->fsolve (0,f)
ans $=-1.2815516$
So $z=-1.282$. We want to have

$$
\left(\frac{-100-P_{R 0}}{8}\right)=-1.282
$$

Solving we get $P_{R 0}=-90 \mathrm{dBm}$. This is 20 dB larger than the previous value of -110 dBm . So we need to increase transmitted power by 20 dB (a factor of 100).

If we can't increase transmitted power, we will have to live with a smaller coverage area.
Example 3: Suppose we have to live with the original power level. At what distance will the probability of good reception be 90% ?
We still need $P_{R 0}=-90 \mathrm{dBm}$ but we achieve this by reducing the distance r so that

$$
-40-35 \log (r / 1 \mathrm{~km})=-90
$$

The solution is $r=26.8 \mathrm{~km}$.

3 Fractional Coverage

A related problem is as follows. We have a base station that is responsible for providing a signal to all users within a distance R of the station. Given a log-normal shadowing model and a value of $P_{\text {min }}$, what fraction of users will be able to communicate with the base station? This is the same as the average probability of getting a good signal, the averaging being done over the area of the radio cell. Computing this average gives us

$$
\begin{align*}
U\left(P_{\text {min }}\right) & =\frac{\iint \operatorname{Pr}\left[P_{R}>P_{\text {min }}\right] d A}{\iint_{R} d A} \\
& =\frac{1}{\pi R^{2}} \int_{0}^{2 \pi} \int_{0}^{R} \operatorname{Pr}\left[P_{R}>P_{\text {min }}\right] r d r d \theta \tag{7}\\
& =\frac{2}{R^{2}} \int_{0}^{R} Q\left(\frac{P_{\min }-\left(P_{0}-10 n \log r / r_{0}\right)}{\sigma}\right) r d r
\end{align*}
$$

With a fair amount of manipulation this can be put into the form

$$
\begin{equation*}
U\left(P_{\text {min }}\right)=\frac{1}{2}[1-\operatorname{erf}(a)]+\frac{1}{2} e^{\frac{1-2 a b}{b^{2}}}\left[1+\operatorname{erf}\left(a-\frac{1}{b}\right)\right] \tag{8}
\end{equation*}
$$

with

$$
\begin{align*}
& a=\frac{P_{\min }-\left(P_{0}-10 n \log \frac{R}{r_{0}}\right)}{\sqrt{2} \sigma} \tag{9}\\
& b=\frac{10 n}{\sqrt{2} \sigma \ln 10}
\end{align*}
$$

A common use of link budget theory is to calculate the transmitted power needed to provide a given percentage coverage in a cell of a certain size, or the maximum cell size possible with a given transmitted power.

Example 4: Assume that $1900-\mathrm{MHz}$ cell phones transmit 800 mW and have $0-$ dBi gain antennas. Your base station has a $6-\mathrm{dBi}$ antenna and needs at least -110 dBm of signal. Assume that fields propagate as in free space out to 10 m and then experience log-normal shadowing with $n=3$ and $\sigma=10 \mathrm{~dB}$. How large a cell radius can these phones operate within with 95% coverage area?
From (9) we have $b=0.9212$. In Scilab we define
$\operatorname{deff}(' y=U(a, b) ', ' y=0.5 *(1-e r f(a))+0.5 * \exp ((1-2 * a * b) /$
(b^2)) *(1+erf(a-1/b))');
With $b=0.9212$, trial and error with the a value leads us to
-->U (-0.8570,0.9212)
ans $=0.9500116$
so $a=-0.8570$. The 800 mW of transmitted power is 29 dBm . The wavelength is $300 / 1900=0.158 \mathrm{~m}$. The fields propagate as in free space out to 10 m , so

$$
P_{0}=29+6+0-20 \log \frac{4 \pi(10 \mathrm{~m})}{0.158 \mathrm{~m}}=-23 \mathrm{dBm}
$$

at $r=r_{0}=10 \mathrm{~m}$. From larger values of r

$$
P_{R 0}=-23-30 \log \frac{r}{10 \mathrm{~m}}
$$

We require

$$
-0.857=\frac{-110-\left(-23-30 \log \frac{R}{10 \mathrm{~m}}\right)}{\sqrt{2}(10)}
$$

The solution is $R=3.13 \mathrm{~km}$.

4 References

1. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall, 1996, ISBN 0-13-375536-3.
