
Lecture 6
Link Budgets

1 Introduction
One of the most important uses of propagation models is to develop  link budgets. A financial
budget typically involves looking at your income, looking at  your required expenditures, and
making sure income is at least as large as expenditures. A link budget is a similar process in an
RF system involving power instead of money.

2 Probability Received Signal Exceeds Some Value
One characterization of a radio receiver is its sensitivity. This is the smallest received signal that
it can properly operate with. For example, suppose a certain cellular phone must receive at least
Pmin=−100 dBm  in order to function properly. Say received signal strength is modeled by

PR=P0−10n log
r
r0

+X (1)

and the phone is some distance  r  from the base station. An important question is: What is the
probability that  PR  will be at least  Pmin ? This is the probability that the phone will function

properly. PR  is a Gaussian random variable with mean PR 0=P0−10 n log
r
r0

 and variance σ2 .

The probability distribution function for PR  will look like that shown in XXXX, and the desired
probability is the area under the curve from Pmin  to infinity.

 

PR0 Pmin 

Fig. 1 Probability that PR  is at least Pmin  is the
area of the shaded portion of the bell curve.

Mathematically this is

Pr [P R≥Pmin]=
1

σ √2π
∫
Pmin

∞

e
−1

2
( x−P R0

σ )
2

dx (2)

With a change of variable y=( x−P R0)/σ  this becomes
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Pr [PR≥Pmin ]=
1

√2π
∫

P min−P R0

σ

∞

e
−1

2
y2

dy

=Q(Pmin−PR 0

σ )
(3)

where the Q function is defined as

Q(z )=
1

√2π
∫

z

∞

e
−1

2
y2

dy (4)

The error function erf(z) is related to the Q function by

Q(z )= 1
2 [1−erf( z

√2)] (5)

Scilab and Matlab have built-in versions of erf. When z≥0  the following approximation for Q

Q(z )=
1

0.661 z+0.339√z 2+5.51

e
−1

2
z 2

√2π
(6)

is good to better than 0.3%.  For z<0  we can use Q(z )=1−Q(−z ) .

Example 1: For the typical car, a certain FM radio station currently produces a
signal PR=−40−35 log(r /1 km)+X  with σ=8 dB . What is the probability of
at least Pmin=−100 dBm  at a distance of 100 km?

At  100  km,  PR 0=−40−35 log(100)=−110dBm .  Since

Q(−100−(−110)
8 )=0.106  the probability is about 10.6%.

Often we want to go the other way with such a calculation, inverting the Q function to find out
the transmitted power level required for good reception.

Example 2: For the situation the previous example, how much would we have to
increase the transmitted power to achieve 90% probability of good reception? 

We need to find z such that Q(z )=0.9 . Here is how we can do that in Scilab

-->deff('y=Q(z)','y=0.5*(1-erf(z/sqrt(2)))');
 
-->deff('y=f(z)','y=Q(z)-0.9');
 
-->fsolve(0,f)
 ans  =  - 1.2815516 

So z=−1.282 . We want to have

(−100−P R 0

8 )=−1.282
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Solving we get PR 0=−90 dBm . This is 20 dB larger than the previous value of
−110 dBm . So we need to increase transmitted power by 20 dB (a factor of
100). 

If we can't increase transmitted power, we will have to live with a smaller coverage area.

Example 3:  Suppose we have to  live  with  the  original  power level.  At  what
distance will the probability of good reception be 90%? 

We still need PR 0=−90 dBm  but we achieve this by reducing the distance r so
that

−40−35 log(r /1 km)=−90

The solution is r=26.8km .

3 Fractional Coverage
A related problem is as follows. We have a base station that is responsible for providing a signal
to all users within a distance R of the station. Given a log-normal shadowing model and a value
of  Pmin , what fraction of users will be able to communicate with the base station? This is the
same as the average probability of getting a good signal, the averaging being done over the area
of the radio cell. Computing this average gives us

U (Pmin)=
∬Pr [P R>Pmin ]dA

∬ dA

=
1

πR2∫
0

2π

∫
0

R

Pr [PR>Pmin ]r dr dθ

= 2

R2∫
0

R

Q( Pmin−(P0−10 n log r / r0)
σ )r dr

(7)

With a fair amount of manipulation this can be put into the form

U (Pmin)=
1
2
[1−erf (a)]+1

2
e

1−2ab
b2 [1+erf(a−1

b)] (8)

with

a=

Pmin−(P0−10n log
R
r0
)

√2σ

b= 10 n

√2σ ln 10

(9)

A common use of link budget theory is to calculate the transmitted power needed to provide a
given percentage coverage in a cell of a certain size, or the maximum cell size possible with a
given transmitted power.
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Example 4: Assume that 1900-MHz cell phones transmit 800 mW and have 0-
dBi  gain antennas.  Your base station has  a 6-dBi antenna and needs  at  least
−110 dBm  of signal. Assume that fields propagate as in free space out to 10 m
and then experience  log-normal  shadowing with  n=3  and  σ=10dB .  How
large a cell radius can these phones operate within with 95% coverage area?

From (9) we have b=0.9212 . In Scilab we define 

deff('y=U(a,b)','y=0.5*(1-erf(a))+0.5*exp((1-2*a*b)/
(b^2))*(1+erf(a-1/b))');

With b=0.9212 , trial and error with the a value leads us to

-->U(-0.8570,0.9212)
 ans  =  0.9500116 

so a=−0.8570 . The 800 mW of transmitted power is 29 dBm. The wavelength
is 300/1900=0.158m . The fields propagate as in free space out to 10 m, so

P0=29+6+0−20 log
4π(10m)
0.158 m

=−23dBm

at r=r 0=10 m . From larger values of r 

PR 0=−23−30 log
r

10m

We require

−0.857=
−110−(−23−30 log

R
10 m)

√2(10)

The solution is R=3.13 km .
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