
Lecture 4
Empirical Propagation Models

1 Introduction
We  need  to  be  able  to  predict  received  signal  strength  in  wireless  systems.  We  use  these
predictions to figure things out such as how much area a certain base station can cover, or how
far away from a base station a cell phone can be and still communicate, or how much interference
our channel will get from other phone uses. Factors like transmitted power and antenna gains are
easy to account for, but the effects of propagation are generally not. We have seen that even in the
highly idealized case of two antennas above a perfectly flat ground, the dependence of received
power on distance is very different than in free space.

In principle, we could take a precise description of the terrain, buildings, foliage and so on in a
given area and solve Maxwell’s equations in this environment to arrive at an exact prediction of
the field at all points of interest. Numerical techniques, such as the finite-difference time-domain
(FDTD) method, can accomplish this with fine accuracy even in very complex environments.
There are, however, two problems with such an approach. First it requires a detailed description
of the environment that typically just isn’t available and would be very hard to develop. Second,
it is (currently) computationally feasible only for relatively small volumes. 

Instead,  we  will  typically  use  rather  simplified  empirical  propagation  models with  a  few
parameters that can be adjusted to give reasonable predictions. Empirical refers to the fact that
these models are generally derived by making lots of measurements and then fitting physically
motivated functions to the observations. When more accurate predictions are required we can
“split the difference” with an exact solution by adding some information about the environment.

2 Log-Normal Shadowing

2.1 Theory

The most important aspect of propagation for us is that the field strength generally decreases with
distance from the transmitter. You might think this is a bad thing but we’ll see that it actually is
very useful if you want to build a system that serves many users. We have already seen examples
where P r=P0−10 n log (r /r 0) . (Note that we’ll drop the dBm and dB subscripts when writing
power and gain, as we will almost always be working on a log scale from here on out.) Free
space propagation is the case n=2 . The two-ray case above a ground plane with Γ=−1  has
n=4  (at  large distances from the transmitter).  We should expect the real world to be more
complicated than either of these two idealized cases, of course, but they might, hopefully, still
capture much of the general behavior of the field in certain real situations. Let’s generalize things
a bit and write

P r=P0−10n log
r
r0

+X (1)
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where n is free to take on any value, and X is a random variable that represents the failure of the
model to perfectly represent the real world. We’ll assume that X is zero-mean Gaussian, that is,
that it has a probably distribution

p X (X )= 1

σ√2π
e
−1

2
( X
σ )

2

(2)

A model of this form is usually referred to as log-normal shadowing because the log of the power
has  a  normal  (Gaussian)  distribution  which  typically represents  the effects  of  shadowing by
obstacles. You can think of  as accounting for our ignorance. If  is small, then our model gives
very accurate predictions. On the other hand, if  is large then the model gives poor predictions.
In the wireless literature  is typically assumed to be around 8 dB.

There are two parameters,  P0  and  n, in model (1). How do we know what these are? Most
commonly many measurements are made and then a  linear regression is performed to find the
parameters that give the “best fit,” i.e., the smallest  . We’ll see how to do a linear regression
shortly.

2.2 Simulation

Fig.  1 shows  a  log-normal  shadowing  simulation.  In  the  left  frame  there  are  no  random
fluctuations in P r  and we obtain circular power contours. In the right frame random fluctuations
(the variable X) result in more complicated power contours.

Fig. 1 Log-normal shadowing simulation. Received power is plotted vs. ground position. Color
bar shows signal level in dBm. Model was P r=P0−10 n log(r /r0)+X  with P0=−40 dBm ,
r0=100 m  and n=4 . Simulated region is 4-km on a side. Left frame has σ=0 , right frame

has σ=8dB .

Although this is simulated data, looking at the contours in the σ=8 dB  case you might be able
to visualize how obstructions (hills, etc.) could create the shadow regions corresponding to low
power levels.

EE 432 Scott Hudson 2017-05-08



Lecture 4 Empirical Propagation Models 3/5

2.3 Experiment

Fig. 2 shows the probability distributions of the residuals of fits of the model (1) for two cellular
control channels in the Pullman, WA area, i.e., the random variable X. The distributions are not
exactly Gaussian, but the Gaussian model gives a workable approximation.

Fig. 2 Residuals (random variable “X”) resulting from using model (1) to fit cellular 
control channel signals in the Pullman, WA area. The solid curves are best-fit Gaussian 
distributions. 

3 Linear Regression
Many physical  processes  are  well  modeled  by linear  ( y=a+bx ),  power-law ( y=a xb ),  or
exponential ( y=a e−bx ) relationships. For a power-law we can take the logarithm of both sides
to get  log y=log a+b log x  which shows that the relation between log x  and log y  is linear.
For exponential relationships we can write ln y=ln a−bx  which is a linear relationship between
x and ln y . So all three of these types of models can be represented by a linear relationship. It
should come as no surprise, therefore, that being able to fit a line to data is an important skill for
scientists and engineers. Let’s see how this is done.

Let’s say you have some data points  (x i , y i) , for  i=1,2,… , N , and you want to fit the linear
model y=a+bx . Let’s take the differences between the actual y values ( y i ) and the modeled y
values ( a+b x i ), square them, add them up, and divide by the total number of points. This gives
us the mean square error:

MSE= 1
N
∑
i=1

N

[ y i−(a+b x i)]
2

(3)
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We want the MSE to be as small as possible. We can set 
∂MSE
∂ a

=
∂MSE
∂ b

=0  to find the values

of a and b that do this. We arrive at

b=
〈 xy 〉−〈 x 〉 〈 y 〉
〈 x2 〉−〈 x 〉2

a=〈 y 〉−b 〈 x 〉
(4)

where the brackets denote the mean value of the quantity. For example 〈 x2〉= 1
N
∑
i=1

N

x i
2 . Using

these values we can estimate the variance of X by

σ2= 1
N−2

∑
i=1

N

[ y i−(a+b xi)]
2

(5)

This is N / (N−2)  times the MSE. The -2 in the denominator is due to the factor that our model
has  two free parameters,  a  and  b.  This  results  in  the  MSE generally being smaller  than  the
variance of X because the model is able to fit not only the "true" line but also some of X. 

Example 1: Suppose we measure received signal strength at distances of 100,
200,  1000,  and  3000  meters  and  obtain  values  0,  -20,  -35,  and  -70  dBm,
respectively. We want to fit a model of the form (1). The first step is to convert
distances (r) to a log scale to serve as  x values. Let's take  r 0=100m  and use
Scilab to perform the calculations.

-->r = [100,200,1000,3000];

-->x = log10(r/100)

 x  =  0.    0.30103    1.    1.4771213  

-->y = [0,-20,-35,-70];

-->b = (mean(x.*y)-mean(x)*mean(y))/(mean(x.^2)-mean(x)^2)

 b  =  - 42.891233

-->a = mean(y)-b*mean(x)

 a  =  - 1.4604167 

Our model is therefore  P r=−1.5−43 log
r

100 m
+X . To estimate the standard

deviation of X we calculate

-->yf = a+b*x

 yf  =  - 1.4604167  - 14.371964  - 44.35165  - 64.815969 

-->sigma = sqrt(sum((yf-y).^2)/(4-2))

 sigma  =  8.6062517  

so σ=8.6 dB .
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4 Reciprocity
It is important to keep in mind that most of the radio links we are interested in are two-way, or
full-duplex links. This means that both radios act as transmitter and receiver. This is diagrammed
in the following figure.

Fig.  3:  In  a  full  duplex  radio  link,  both  radios  act  as
transmitter and receiver to achieve two-way communication.

In a cellular system, typically one of the radios is a fixed base station and the other is a mobile
handset or cell phone. We call the link in which the base transmits and the mobile receives the
downlink (also called the forward channel) and that in which the mobile transmits and the base
receives the uplink (also called the reverse channel). Let’s say the base transmits power PTB  and
the mobile receives PRM . If the mobile then transmits power PTM  what will the base receive? 

The  reciprocity theorem of electromagnetics provides the answer. If each radio uses the same
antenna for  both transmit  and receive,  and if  the environment  in  which the fields  propagate
contain only “non-exotic” materials then can write

P RM=PTB−L
 P RB=PTM−L

(6)

where all quantities are on a dB scale. (Note that there are exotic “non-reciprocal” materials,
notably ferrite, but we do not encounter them in the scenarios we are considering.) Here L is the
total  system loss between transmitter  and receiver.  The important point is  that  loss does not
depend on which radio acts as transmitter and which acts as receiver. Therefore if we develop a
propagation model for the downlink, it will also apply to the uplink. We need only take into
account the difference in transmitted power.
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