
Lecture 3
Ground Reflections

1 Introduction
When dealing with radio waves in a terrestrial environment we almost never observe free-space
propagation of the type we talked about in the last lecture. This is because the waves interact with
the  environment:  ground,  trees,  buildings,  etc.  The  result  is  that  we  typically  have  several
reflected or diffracted waves interfering with one another at any given point. (We’ll talk about
diffraction later.) This complicates things quite a bit.  In this lesson we’ll consider the simple
model of a transmitter-receiver pair above an infinite “ground plane.” We don’t live on an infinite
flat plane, but this simple model does have some explanatory power in the real world, and it will
motivate some empirical models that we’ll learn about later.

2 Geometry
Assume a transmitter is a height h t  above a flat, smooth ground and a receiver is at a height hr

while  the ground distance between them is  r.  This  is  illustrated in  Fig.  1.  Let the reflection
coefficient of the ground be . The reflection coefficient is the ratio of the reflected electric field
to the incident electric field. In our model we will assume this is a constant. In fact, as you know
from a course like EE 351, this is really a function of the field polarization and the angle of
incidence.

Fig. 1: Geometry for the ground reflection problem (the “two-ray model”).

There are two paths for radio waves to take from transmitter to receiver: a direct path and a
reflected path. Call the length of the direct path r 1  and that of the reflected path r 2 . The law of
reflection requires the angle of incidence to equal the angle of reflection (the angles   in the
figure). The result is that the reflected field appears to come from a “mirror image” of the source
at a distance h t  below the ground. Basic geometry gives us the distances
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r 1=√r2 + (h t−hr)
2

r 2=√r 2 +(ht + hr)
2

(1)

We’ll be interested in cases where r≫h t , hr . For example r might be hundreds or thousands of
meters while the  h values are only a few, or maybe a few tens of meters. Then the following
approximations are good (recall that for small x, √1 + x≈1+ x /2 ):

r 1≈r +
(ht−hr)

2

2 r

r 2≈r +
(ht + hr)

2

2 r

(2)

The path difference is

Δr=r2−r1≈2
ht hr

r
(3)

As we’d expect from Fig. 1, this goes to zero at large distances.

Exercise 1: Derive (2) and (3) using the approximation √1+ x≈1+ x /2 .

3 Theory
The receiver will “see” two transmitters – the real transmitter above the ground and a virtual, or
mirror image, transmitter below the ground. The intensity of each of these fields in the absence of
the other would be given by the Friis equation:

PR 1=PT

GT GRλ
2

(4 π)2  
1

r1
2

 and PR 2=PT

GT GRλ
2

(4π)2
 

1

r 2
2

(4)

When both are present we cannot simply add the powers because it is the EM fields that add, and
the fields have both amplitude and phase. The amplitude is proportional to the square root of the
intensity and the phase is   times the distance traveled in wavelengths. The amplitude of the
reflected field is also multiplied by , the reflection coefficient of the ground. The total power,
proportional to the magnitude squared of this total field, is

PR=PT

GT GRλ
2

(4π)2
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|
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(5)

For large r (2) tells us that r 1 , r 2  both approach r, so the phase terms in (5) will approach one
another  in  both  phase  and  amplitude  (other  than  the  Γ  factor).  If  Γ=−1 ,  which  would
correspond to a perfectly conducting ground with a certain polarization, the two terms will tend
to cancel each other and the received power will drop very rapidly. We have in this special case
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so

PR≈PT

GT GRλ
2

(4π)2
⋅

4

r2 sin2 πΔ r
λ =PT

GT GRλ
2

(2πr )2  sin2 πΔ r
λ (7)

Using (3)

PR≈PT

GT GRλ
2

(2πr)2  sin 2 2πh t hr

λ r
(8)

The sine term oscillates between 0 and 1 while the “envelope”  PT GT G Rλ
2/(2π r )2  has the

1/r 2  behavior of free-space propagation.

The  approximation  sin2(1 / x)=1 / x2  is  good  to  1.5  dB  for  x≥1 .  (That  is,

10 log [(1/ x2)/sin2(1/ x)]<1.5dB  for x≥1 .) So, for large enough r, we can write

PR≈PT GT GR

ht
2 hr

2

r4
(9)

Here the received power is falling off as 1/r 4 , much more rapidly than it would in free space. It
is  also  interesting  to  note  that  there  is  no  wavelength  dependence  in  this  expression.  The
envelopes of (8) and (9) are equal when r=2π ht hr /λ . If we neglect the sine oscillations in (8)
we can create a composite propagation model as follows:

PR={PT GT GR
λ 2

(2π r )2
 ; r<

2πh t hr

λ

PT GT GR

ht
2 hr

2

r4  ; r≥
2πh t hr

λ

(10)

This is an example of a breakpoint model, the breakpoint r=2π ht hr /λ  being where the model
changes from one type of behavior to another. If we use the breakpoint as the reference distance
r 0  then
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P R, dBm={P0 ,dBm−20 log
r
r0

 ; r<r 0

P0 ,dBm−40 log
r
r0

 ; r≥r0

       r 0=2π ht hr /λ

 P0 ,dBm=PT , dBm+GT ,dB+GR , dB+20 log λ2

(2π)2 h t hr

(11)

(Keep in mind that everything we’ve done is valid only for the case  Γ=−1 .) The important
point here is that the presence of the ground can cause the field to decay very differently from the
1/r 2  behavior of free space.

It  is  instructive to  ask what  happens to  (11) if  we change the height  of  one or  both  of  the
antennas. First, notice that the model depends on ly on the product h t hr . Let’s say we change the
heights so that the new value of this product is a ht hr . For example, if we double the height of

one of the antennas then a=2 . The new breakpoint will be r 0
′=a r0 . Since there is no change in

the transmitted power or antenna gains the new reference power is

P0 ,dBm
′ =PT , dBm+GT ,dB+GR, dB+20 log λ2

(2π)2 a ht hr

=P0 ,dBm−20 log a

(12)

(because 20 log
x
a
=20 log x−20 loga ). If we are at a small distance where r<r 0 , r 0

′
 then the

new model is

P R, dBm
′ =P0 , dBm

′ −20 log
r

a r0

=P0 ,dBm−20 log a−20 log
r
r 0

+20 log a

=P R , dBm

(13)

So, for distances less that either breakpoint there is no change in the received power. This makes
sense because () models the close-in field as being the same as in free-space. For small distances
the ground is assumed to have no effect, hence the antenna heights shouldn’t have any effect.

On the other hand, at larger distances where r>r 0 , r 0
′

P R, dBm
′ =P0 , dBm

′ −40 log
r

a r0

=P0 ,dBm−20 log a−40 log
r
r 0

+40 log a

=P R , dBm+20 log a

(14)
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and received power is changed by the constant amount  20 log a . For example, if you increase
either antenna height by a factor of 2, then the received power at large-enough distances increases
by 6 dB. 

The following figure shows an example in which h t hr  is increased by a factor of 10.

1 0.5 0 0.5 1 1.5 2
100

80

60

40

20

0

log(r/75m)

P
r 

(d
B

m
)

Fig.  2 Effect  of  changing  antenna  height.  Solid  curve  shows  PR  for  ht=hr=2 m ,  ,
G R=3 dB , GT=10dB  and PT=1W (30dBm) . Dashed curve is the case where we change

to ht=20m . The effect is to extend the breakpoint to a larger distance. 

4 Simulation
Fig. 3 shows a calculation of (5) for the case  Γ=−1  and  h t=10 λ , hr=3λ . Also shown are

1/r 2  and 1/r 4  behaviors characteristic of small and large r values.

When received power falls off as 1/r n , we say that the propagation constant is n. For free space
the propagation constant is  n=2 . At large distances the ground-reflection model with Γ=−1
has a propagation constant n=4 . Thus we see that it is quite possible, even in a relatively simple
geometry, to get a propagation constant different than that of free space.

Example 1: Assume a propagation model of the form (11). Suppose a cellular
base station transmits 30 dBm (1 W) of power and has antenna gain 7 dB and
height 10 m. A roof-mounted car antenna is 1.5-m high and has 3 dB gain. The
frequency is 1900 MHz. How far away can the car be and still receive −90dBm
of signal?

The  wavelength  is  300/1900=0.158m .  From  (11)  we  get  r 0=597 m  and
P0=−47.5dBm .  When  then  solve  −90=−47.5−40 log(r /597 m)  to  get
r=6.89km .
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Fig. 3 Ground reflection model (5) (solid curve), envelope of (8) (dotted line), and (9) (dashed 
line) for ht=10, hr=3. The breakpoint is at 188.

5 Experiment
A 915-MHz transmitter was placed 2.5 ft above a sidewalk. Field strength measurements were
made at various distances and at a height of 3 ft. The observed data are show in Fig. 4 along with
(5) and the free-space model. A reference distance of r 0=5 ft  was used. The ground-reflection
model does capture the general behavior of the data. In Fig. 5 we plot the observed data along
with  1/r n  models for  n=2,3,4 . This illustrates the breakpoint concept. The theoretical break
point of (11) is about 48 feet in this case. Since log(48/5)=0.98  we would expect a breakpoint
near 1 on the horizontal axis. This is indeed what we observe. The data are fairly well described
by n=2  for small r and by n=3  for large r. 
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Fig. 4 Ground reflection measurements above a sidewalk at 915MHz. Reference
distance r0 is 5ft. Circles are observed data. Solid curve is (5) with a  of 0.6.
Dashed curve is free-space model.
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Fig. 5 Data of Fig. 4 compared to various 1/ rn  models. n=2  gives a descent description
for small r while n=3  gives a descent description of large r.

EE 432 Scott Hudson 2017-05-07


	1 Introduction
	2 Geometry
	3 Theory
	4 Simulation
	5 Experiment
	6 References

