
Lecture 2
Radiowave Propagation

1 Introduction
Wireless communication relies on electromagnetic waves to carry information from one point to
another. This propagation forms our physical channel. It is essential that we understand it if we
are going to be able to understand and design wireless systems. This is a complex subject and
will  be  our  focus  for  several  lectures.  We will  begin  by considering  the  case  of  free-space
propagation. First, however, we need to learn/review the dBm logarithmic power scale, as we
will use this extensively.

2 Logarithmic Power Scales
Power levels in radio systems can have very large dynamic ranges. For example, a CB (“citizen’s
band”) radio might transmit 4W and receive as little as 10 fW ( 10−14 W ). That’s a dynamic range
of more than 14 orders of magnitude. Instead of having to use factors like  1014 , it is usually
more convenient to work on a logarithmic scale. Also, most of the systems we will consider can
be treated as a cascade of blocks in which each block adds a gain factor. Since logarithms turn
factors into sums, working on a log scale often simplifies analysis – you add instead of multiply.

A dimensionless number A can be represented on a decibel scale as

AdB=10 log A

  A=10
AdB /10

(1)

If  P is a power level then it has dimensions. Therefore, we cannot directly convert it to a dB
scale. But we can get a dimensionless number by taking the ratio of P to some reference power.
The most commonly used reference in RF telecom is one milliwatt, and we write dBm, meaning
dB relative to a milliwatt. The relation is

PdBm=10 log PmW

PmW=10
P dBm/10

(2)

where PmW  is the power level expressed in milliwatts and PdBm  is the corresponding expression
in dBm. Sometimes a reference of 1 W is used in which case we write dBW, meaning dB relative
to a watt. Then the relation is

PdBW=10 log PW

  PW=10
PdBW /10

(3)

Where  PW  is the power expressed in watts. There are numerous other references that can be
used, but we will almost always use the dBm scale.

The majority of radio systems operate with a characteristic impedance of 50 W. In this case the
relationship between power and peak voltage is
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P= V 2

2⋅50
V =10√P

(4)

Where  P is power (in watts) and  V is voltage (in volts). The following table lists some power
levels in dBm and Watts. It also lists the corresponding peak voltage in a 50 W system.

P(dBm) P V

40 10  W 31.6  V

30 1  W 10  V

0 1 mW 316 mV

-30 10 mV

-60 1 nW

-90 1 pW

-110 10 fW

-120 1 fW 316 nV

1 mW

316 mV

10 mV

1 mV

You should develop the ability to “think in dB” without a calculator. Here are some important
numbers: 10dB is a factor of 10, 3dB is (very nearly) a factor of 2, and 1dB is (nearly) a factor of
5/4. Likewise: 10dB is a factor of 1/10, 3dB is (very nearly) a factor of 1/2, and 1dB is  
(nearly) a factor of 4/5.

Example 1:  To  figure  out  a  power  level  of  –47dBm in  watts  we  can  write
−47 dBm=−50 dBm+3 dB  so we have (10−5 mW)⋅2=20 nW . 

A system  has  a  gain  of  15dB.  Since  15=10+3+31 this  gives  a  factor  of

10⋅2⋅2⋅
4
5
=32 .

It is very important to keep in mind that you cannot add dBm values. For example it is not correct
to write 10dBm+3dBm=13 dBm . This implies that you have 10 dBm of power, add 3 dBm of
power and end up with 13dBm of power. In fact 10 dBm is 10mW while 3 dBm is 2mW. The
sum is 12mW which corresponds to 10.8 dBm. On the other hand 10dBm+3dB=13dBm  is a
correct expression. This means that we have a power level of 10 dBm which is then increased by
3 dB to get 13 dBm of power. On a linear scale we would write 10 mW⋅2=20 mW  and 20 mW
is 13 dBm. In other words, the 10 dBm is put through a system with a power gain of 3 dB (factor
of 2) resulting in 13 dBm output power.

3 Free-Space Propagation
Suppose we have a radio that transmits power  PT  watts  isotropically,  that is,  it  generates a
spherical wave that sends the same power in all directions. At a distance r the power PT  will

have spread over a sphere of surface area 4π r 2 , so the intensity is PT /(4 πr 2)  watts per square
meter. In practice systems don’t transmit isotropically but instead use antennas with  directivity
that increase the power in certain directions and decrease it in others. The antenna gain, GT , is
the factor by which this process increases the intensity in some desired direction relative the
isotropic  case.  The  intensity in  that  direction  is  then  PT GT /(4π r2) .  Sometimes  the  factor
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PT GT is referred to as EIRP (Effective Isotropic Radiated Power). This is the power a fictitious
system would have to radiate isotropically to get the same intensity the real system (with antenna
gain) provides.

Suppose we collect some of this power with an aperture of area AR . The received power will
then be the intensity times the area or

PR=PT

GT AR

4π r2
(5)

This is one form of the Friis equation. Antenna theory tells us that area and gain are related by
A=G λ2/4 π , with  the wavelength, so we can write

PR=PT

GT GRλ
2

(4π r)2 (6)

where GR  is the gain of the receiving antenna. (Note that  λ(m)=300 / f (MHz) .) This is the
form we will make the most use of as antennas are usually characterized by gain instead of area.
Expressing the powers in milliwatts and taking 10 log ()  of both sides we get

PR , dBm=PT ,dBm + GT ,dB + GR , dB−20 log
4π r
λ (7)

(Sometimes antenna gain is written as dBi, meaning dB relative to isotropic.) Say we have a
received power of P0  at some reference distance r 0 . We might obtain P0  from (7) as

P0=PT , dBm+GT , dB +GR, dB−20 log
4π r0

λ (8)

or we could measure it. In either case, for any other distance we can then write

PR , dBm=P0−20 log
r
r0

(9)

Exercise 1: Derive (9) from (7) and (8). Hint: in (7) write r=r 0(r /r 0) .

Equation (9) is convenient in that we don’t have to explicitly deal with the antenna gains and
wavelength terms. And, if we treat log (r /r 0)  as the independent variable, then this is a simple
slope-intercept linear relationship. Since log (10 r /r0)= log10+log (r /r 0)=1+log(r /r 0) , when
r increases  by a  factor  of  10  (a  decade),  log (r /r 0)  increases  by 1,  and  PR , dBm  decreases
−20dBm . We say that expression (9) has a slope of −20dB/decade . 

Example 2: We transmit 4 W of power at a frequency of 27 MHz (e.g., a CB
radio). The corresponding wavelength is 11 m. Let the transmitter and receiver
antennas  both  have  gains  of  2  (fairly typically for  a  “dipole”  antenna).  At  a
distance  of  10  km  the  received  power  would  be
4W (2)(2)(11m)2/(4π10000m)2  which gives us 123 nW or –39 dBm. For this
received power the voltage level would be 3.5 mV. This might sound like a very
weak signal, but even an inexpensive CB radio will have a sensitivity of around
1-mV which corresponds to 10 fW or –110 dBm, so it’s about a factor ten million
stronger than the weakest signal the radio could pick up. (It’s the ability of radios
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to  receiver  such  small  signals  that  enables  radio  communication  over  useful
distances.)

For other distances we can then write PR , dBm=−39−20 log
r

10km
. Say we want

to  find  the  distance  at  which  PR , dBm=−100dBm .  The  answer  is

r=10 km(10
−100+ 39

−20 )=11,200 km .  Now,  this  result  is  only valid  for  an  ideal
system in free space. In practice the presence of terrain has a very large effect on
propagation.  (We will  consider  the  effects  of  terrain  on  radio  propagation  in
future lectures.) 

Example 3: An example of nearly ideal free-space propagation is provided by
satellite  communication  systems.  Say  a  TV  satellite  in  geostationary  orbit
(36,000 km altitude), transmits 10 W (40 dBm), operates at 3.95 GHz (76 mm
wavelength), and has antenna gain of 27 dBi, which is roughly the directivity
needed to spread its transmission over North America. If you want a received
signal strength of at least –90 dBm on the ground, what size of antenna do you
need?

We  need  to  have  −90=40+ 27 + GR , dB−20 log
4π(36,000km)

76
mm .  Solving

for  the  gain  we  get  GR=38dB .  On  a  linear  scale  this  is  GR=6310 ,  so

Gλ2 /4π=2.9 m2  is the required aperture area. This gives us a circular dish of
diameter 1.9 m.  

Example 4:  The  Voyager  spacecraft  has  a  3.7  m-diameter  antenna,  a  23-W
transmitter  (44  dBm),  and  operates  at  a  frequency  of  8.4  GHz  (36-mm
wavelength). The NASA Deep Space Network receiving antennas have diameters
of 34 m. The corresponding antenna gains are GT=50dB  and GR=70dB . We
thus  have  P r ,dBm=44 + 50 + 70−20 log (4πr /36 mm ) .  In  the  year  2000,
Voyager’s distance from Earth was about 12 billion km. Plugging in this distance
we find  PR=−148dBm  or about a millionth of a trillionth of a watt.  To get
some idea of how small this power level is, consider that a AA battery can hold
about 1W-hr of energy. If you drained a AA battery continuously at –148dBm of
power it would last several thousands of times the age of the universe before
going dead. Yet the sensitivity of this system is such that reliable communication
is possible at this signal level.

Example 5:  Consider an even more extreme example. The Arecibo radio/radar
telescope in Puerto Rico can transmit 1 MW (90 dBm) at 2380 MHz (12.6-cm
wavelength) and has an antenna gain of about  77 dB. For a 1-Hz bandwidth
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signal it has a receiving sensitivity of around –180 dBm. Assume that this system
transmits a signal to an identical system. Solving

−180=90+ 77+ 77−20 log(4 πr /12.6cm)

we  find  that  r is  about  1700  light-years.  It  is  numbers  such  as  these  that
encourage intelligent people to spend time looking for signs of extra terrestrial
intelligence in the radio spectrum.
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