
CptS 481: Python Software Construction, Spring 2020 1

Homework #4 Due: 10/29

This homework assumes and extends the definitions made in the previous quiz on doing
basic nuclear physics with Python, so make sure you have a working implementation of that
code first. As before, everything you need to know about the subject is described in this
document.

Put all code in a single module named react (i.e., a file named react.py). It should
include a self-test that demonstrates the basic features of the module.

If you attempt any designated extra credit, note that you are doing so in a README.txt

file included in the tarball.
Remember a guiding principle of software development: “DRY” (Don’t Repeat Yourself).

Redundant code will lose points.

1. [ 40 points ] Create a class called Reaction. This class is created with a left-hand
side and a right-hand side, both specified by tuples containing one or more Particles
(including Nucleuses). The reaction taking place transforms the particles on the left-
hand side to the particles on the right hand side.

Include two exceptions, UnbalancedCharge and UnbalancedNumber to be invoked as
follows. When a reaction is created, your system checks two conservation rules, one
for charge and one for mass number:

� The sums of the charges on the left and right hand sides must be equal. If the
charge sums are not equal, your code should “raise UnbalancedCharge(diff ),”
where diff is the (int) difference in charges.

� The sums of the mass numbers on the left and right hand sides must be equal. If
the mass number sums are not equal, your code should “raise UnbalancedNumber(diff ),”
where diff is the (int) difference in mass numbers.

These exceptions should incorporate the diff s into their error message which the ex-
ceptions do not print ! Do nothing to handle these exceptions! (Except in your tests.)

When a reaction is printed, all of the left hand side reactants appear, separated by
“ + ”, followed by “ -> ”, followed by all of the right hand side reactants, separated
by “ + ”.

Using the particles defined in the quiz:

print(Reaction((li6, d), (he4, he4)))

should produce

(6)Li + (2)H -> (4)He + (4)He



CptS 481: Python Software Construction, Spring 2020 2

2. [ 10 points ] Extend the Particle class to have the “+” operator acting on two
Particles result in a tuple containing them, so that

print(Reaction(li6 + d, he4 + he4))

is completely equivalent to

print(Reaction((li6, d), (he4, he4)))

(5 pts. extra credit) Make your code work for more than two Particles being “added”,
(e.g. “li6 + d + he4”) and allow particles in Reaction arguments to be replicated
by replication disguised as positive integer multiplication with the integer on the left
(e.g. “4 * p” should be treated as “p + p + p + p”).

3. [ 50 points ] Reactions may be grouped in sets called “chains”. Create a ChainReaction

class that has a name and can contain zero or more Reactions. Do this in two parts:

Create a ChainReaction class as specified above. Include a member function addReaction()

to add a Reaction to the chain.

A chain reaction is then specified as follows:

# one of the principal reactions powering the Sun

he3 = Nucleus("He", 2, 3) # not defined above

chnPP = ChainReaction("proton -proton (branch I)")

for rctn in (Reaction ((p, p), (d, ep , nu_e)),

Reaction ((p, p), (d, ep, nu_e)),

Reaction ((d, p), (he3 , gamma)),

Reaction ((d, p), (he3 , gamma)),

Reaction ((he3 , he3), (he4 , p, p))):

chnPP.addReaction(rctn)

Also, define how a ChainReaction is printed. Its format includes its name, each of the
constituent reactions, and the “net reaction”, so that in the above, “print(chnPP)”
produces

proton-proton (branch I) chain:

p + p -> (2)H + e+ + nu_e

p + p -> (2)H + e+ + nu_e

(2)H + p -> (3)He + gamma

(2)H + p -> (3)He + gamma

(3)He + (3)He -> (4)He + p + p

net:

p + p + p + p -> e+ + nu_e + e+ + nu_e + gamma + gamma + (4)He



CptS 481: Python Software Construction, Spring 2020 3

The net reaction is constructed by the following pseudocode:

lhsNet ← merge of the left-hand sides of all reactions in the chain
rhsNet ← merge of the right-hand sides of all reactions in the chain
for each particle p in lhsNet,

if p occurs in rhsNet,
remove p from both lhsNet and rhsNet

create the net reaction lhsNet → rhsNet

(5 pts. extra credit) Enhance how Reactions and ChainReactions are printed to
replace duplicate entries on left- and right-hand sides with counts, so that the above
result for the net reaction would be, for instance:

4 p -> 2 e+ + 2 nu_e + 2 gamma + (4)He

(The order on each side doesn’t matter.)


