
CptS 481, Fall 2020 1

Homework #3 Due: 10/20

This homework will test your ability to make use of Python’s objects and magic methods.
Think before you code: A bad design will waste your time and lead to buggy and hard-to-test
code.

Reminder: This assignment is to be your own work. You are not to “borrow” code from
any source apart from the textbook.

1. [100 points] Implement a class Roman in a module roman.py that adds Roman numeral
functionality to Python. The basic digits are:

numeral decimal equivalent
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

In addition, a bar could be put over or parentheses put around any of these except I

(that is, “one”) that would multiply it by 1000. Using the latter, we have:

numeral decimal equivalent
(V) 5000
(X) 10000
(L) 50000
(C) 100000
(D) 500000
(M) 1000000

There are specific rules for how to turn any positive integer up to several million into
roman numerals. For example, 37 is XXXVII and 99 is XCIX. If you don’t remember
these rules, the Wikipedia article “Roman Numerals” is a good review.

Roman should implement the following operations:

x + y x - y x * y x / y

x // y x ** y x == y x != y

x < y x <= y x >= y x > y

-x

Observe these additional constraints:

� The result of any unary arithmetic operation involving a Roman should be a Roman.

� The result of any binary arithmetic operation involving a Roman and an int should
be a Roman.

CptS 481, Fall 2020 2

� (Comparison operations still result in bools, of course.)

� Roman mathematicians did not have negative numbers, but Roman will indicate
negative values with a - prefix.

� Roman mathematicians did not have a zero, but Roman will use ’N’ to stand for
nulla (“nothing”). Note that N is never a placeholder: It is only used to indicate
a value of 0.

� Floor (“//”) division returns a Roman, ignoring the remainder (as it should).

� True (“/”) division returns a tuple of two Romans “(quotient, remainder)”.

� Reuse magic methods wherever possible. E.g., radd () should call add ()

� Values that are too big in absolute value to represent (let’s make it 2000000 or
more for convenience), should raise a ValueError exception.

� Roman() should accept a mandatory int argument.

Here is an interactive example of the working module:

>>> from roman import Roman

>>> III = Roman(3)

>>> VII = Roman(7)

>>> print(III)

III

>>> III + VII

Roman(10)

>>> print(III + VII)

X

>>> print(VII + 2)

IX

Within the module, instantiate all roman numerals up to and including 1000 (i.e. M)
as objects so that this (for instance) works:

>>> from roman import *

>>> III*XI + CM*II

Roman(1833)

There’s an easy way to do this (hint: globals()) and a hard way. Credit will not be
given for the hard way.

[+10 pts. extra credit] Make the constructor Roman() also accept a legal roman
numeral (as a str) and convert it for use internally. (Any illegal roman numeral string
should raise an exception of your own design.) Also make this the default display
format for the repr () method. This would make the line in the above example:

>>> III + VII

Roman(’X’)

If you attempt extra credit, include a README.txt file in your tarball saying so.

