
Unit 17: Regular Expressions

CptS 360 (System Programming)
Unit 17: Regular Expressions

Bob Lewis

School of Engineering and Applied Sciences
Washington State University

Spring, 2022

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

Motivation

I Regular expressions (“RE”s) are extremely useful in system
(and other) programming.

I Facility with REs is the mark of an experienced system
programmer.

I Regular expressions are part of the POSIX standard.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

References

I https:

//remram44.github.io/regex-cheatsheet/regex.html

(This includes a comparison of several RE “flavors”.)

I regex(3)

I Friedl, Jeffrey E. F., Mastering Regular Expressions, O’Reilly,
Inc., 3rd. ed. (2006)

Bob Lewis WSU CptS 360 (Spring, 2022)

https://remram44.github.io/regex-cheatsheet/regex.html
https://remram44.github.io/regex-cheatsheet/regex.html
man:regex(3)


Unit 17: Regular Expressions

Regular Expression Flavors

I Perl/PCRE (“Perl Compatible Regular Expressions”)
See pcre(3) (which differs slightly from Perl itself). Used by
Perl (of course), grep(1) (with the “-P” option), and several
text editors and IDEs. It’s powerful, but may be overkill.

I Python’s re package
See “$ pydoc3 re”. Used by the Python language. (“Perl
inspired”)

I POSIX (Basic)
See regex(3). Used by grep(1) and sed(1).

I POSIX (Extended)
Also see regex(3). Used by awk(1), less(1), egrep(1), and
sed(1) (with the “-E” option).

I Vim
Used by the vim(1) editors.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:pcre(3)
man:grep(1)
man:regex(3)
man:grep(1)
man:sed(1)
man:regex(3)
man:awk(1)
man:less(1)
man:egrep(1)
man:sed(1)
man:vim(1)


Unit 17: Regular Expressions

One Curmudgeon’s Opinion

“I define UNIX as 30 definitions of regular expressions living under
one roof.”
– Donald Knuth (Computer Scientist Supreme)

The number is a little high, but he has a point. We’ll cover the
two POSIX flavors, but the others are upwardly-compatible with
these features.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

What is an RE?

I An RE is a string (a pattern) of one or more components
specifying a sequence of characters to be matched in a target
string.

I The simplest components:
I a letter a-z or A-Z
I a decimal digit 0-9
I any other character not used as a metacharacter (below)
I any metacharacter “escaped” with a preceding ’\’

I For a RE match to succeed, each component in the RE must
either match one or more characters in the target or indicate a
boundary, non-boundary, repetition, alternation (choice from
one of several components), or group.

(see demos/dn regexplore)

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

Character Class Components

These match one of several characters:

component matches any ...
. character except newline

[seq] character in seq (alternation)

[^seq] character not in seq

\w identifier (alphanumeric and “ ”) character

\W non-identifier character

[ch0 -ch1] character between ch0 and ch1, inclusive

\s whitespace (e.g., ’ ’ or ’\t’) character

[[:keyword:]] character belonging to the keyword class (next
slide)

[^ [:keyword:]] character not belonging to the keyword class

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

Keyword Character Classes

keyword component matches any...
upper upper case letter

lower lower case letter

space whitespace character (same as ’\s’)

alpha alphabetical character

alnum alphanumeric character

digit decimal digit

xdigit hexadecimal digit

punct punctuation mark

You can combine keyword and non-keyword character classes, so
“[[:digit:][:punct:]X]” will match a decimal digit, a
punctuation mark, or the letter ’X’.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

Boundary Components

Instead of characters, these match boundaries before, after, and
between characters.

component boundary
^ start of the line

$ end of the line

\< start of word

\> end of word

\b start or end of word

\B non-start or non-end of word

These are all “zero-width”, so use them with non-boundary
components or regex(3) will get confused.

Bob Lewis WSU CptS 360 (Spring, 2022)

man:regex(3)


Unit 17: Regular Expressions

Repetition

These symbols indicate a repetition of the previous component:

symbol indicates this many repetitions
\? 0 or 1 (Basic)

? 0 or 1 (Extended)

* 0 or more

\+ 1 or more (Basic)

+ 1 or more (Extended)

\{n\} exactly n (Basic)

{n} exactly n (Extended)

\{n,m\} between n and m, inclusive (Basic)

{n,m} between n and m, inclusive (Extended)

\{n,\} n or more (Basic)

{n,} n or more (Extended)

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

Alternation and Grouping

These operators allow you to combine alternative REs and define
and match previous RE groups.

operator means
re0\|re1 match either re0 or re1 (Basic)

re0 |re1 match either re0 or re1 (Extended)

\(re\) define a group matching re (Basic)

(re) define a group matching re (Extended)

\n match previously-defined group n

Within a match, group 0 is always the whole match, group 1 is the
leftmost group within the match, etc.

Bob Lewis WSU CptS 360 (Spring, 2022)



Unit 17: Regular Expressions

Some RE Applications

Here are a couple of RE applications:

I scramble
demonstrates an (alleged) research result that says that
people can understand text if the words are scrambled as long
as the first and last letters are preserved.
(run demos/dn scramble)
Note the use of RE matches for substitution.

I willpower
uses REs to analyze a text of a play (courtesy of Project
Gutenburg) for stage directions.
(run demos/dn willpower)

and, for fun and to test your RE expertise, take a look at
re crossword.pdf in the lecture notes directory.

Bob Lewis WSU CptS 360 (Spring, 2022)


	Unit 17: Regular Expressions

